000864951 001__ 864951
000864951 005__ 20240313094925.0
000864951 037__ $$aFZJ-2019-04543
000864951 041__ $$aEnglish
000864951 1001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b0$$eCorresponding author$$ufzj
000864951 1112_ $$aINCF Neuroinformatics$$cWarsaw$$d2019-09-01 - 2019-09-02$$wPoland
000864951 245__ $$aEvaluating neural network models within a formal validation framework
000864951 260__ $$c2019
000864951 3367_ $$033$$2EndNote$$aConference Paper
000864951 3367_ $$2DataCite$$aOther
000864951 3367_ $$2BibTeX$$aINPROCEEDINGS
000864951 3367_ $$2DRIVER$$aconferenceObject
000864951 3367_ $$2ORCID$$aLECTURE_SPEECH
000864951 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1567766928_15729$$xAfter Call
000864951 520__ $$aTo bridge the gap between the theory of neuronal networks and findings obtained by the analysis of experimental data, advances in computational neuroscience rely heavily on simulations of neuronal network models. The verification of model implementations and validation of its simulation results is thus an indispensable part of any simulation workflow. Moreover, in face of the heterogeneity of models and simulators, approaches to enable the comparison between model implementations is an issue of increasing importance which calls for the establishment of a formalized validation scheme. Although the bottom-up validation of cell response properties is important, it does not automatically entail the validity of the simulation dynamics on the network scale. Here, we discuss a set of tests to assess the network dynamics to attain a quantified level of agreement with a given reference.We developed NetworkUnit (RRID:SCR_016543; github.com/INM-6/NetworkUnit) as a Python library, built on top of the SciUnit (RRID:SCR_014528) framework [1,2], as formal implementation of this validation process for network-level validation testing, which complements NeuronUnit (RRID:SCR_015634) for the single cell level. The toolbox Elephant (RRID:SCR_003833) provides the foundation to extract well-defined and comparable features of the network dynamics. We demonstrate the use of the library in a validation testing workflow [3,4] using a worked example involving the SpiNNaker neuromorphic system.References1 Omar, C., Aldrich, J., and Gerkin, R. C. (2014). “Collaborative infrastructure for test-driven scientific model validation”. Companion Proceedings of the 36th International Conference on Software Engineering - ICSE Companion 2014, pages 524–527., 10.1145/2591062.25911292 Sarma, G. P., Jacobs, T. W., Watts, M. D., Ghayoomie, S. V., Larson, S. D., and Gerkin, R. C. (2016). “Unit testing, model validation, and biological simulation”. F1000 Research, 5:1946., 10.12688/f1000research.9315.13 Gutzen, R., von Papen M., Trensch G., Quaglio P., Grün S., and Denker M. (2018). “Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level of Network Activity Data”. Frontiers in Neuroinformatics 12:90., 10.3389/fninf.2018.000904 Trensch, G., Gutzen R., Blundell I., Denker M., and Morrison A. (2018). “Rigorous Neural Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of Simulation Results in the Absence of Experimental Validation Data”. Frontiers in Neuroinformatics 12:81., 10.3389/fninf.2018.00081
000864951 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000864951 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000864951 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000864951 7001_ $$0P:(DE-Juel1)171972$$avon Papen, Michael$$b1
000864951 7001_ $$0P:(DE-Juel1)168379$$aTrensch, Guido$$b2$$ufzj
000864951 7001_ $$0P:(DE-Juel1)164108$$aQuaglio, Pietro$$b3$$ufzj
000864951 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b4$$ufzj
000864951 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b5$$eLast author$$ufzj
000864951 909CO $$ooai:juser.fz-juelich.de:864951$$pec_fundedresources$$pVDB$$popenaire
000864951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b0$$kFZJ
000864951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168379$$aForschungszentrum Jülich$$b2$$kFZJ
000864951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164108$$aForschungszentrum Jülich$$b3$$kFZJ
000864951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b4$$kFZJ
000864951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b5$$kFZJ
000864951 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000864951 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000864951 9141_ $$y2019
000864951 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000864951 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000864951 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000864951 980__ $$aconf
000864951 980__ $$aVDB
000864951 980__ $$aI:(DE-Juel1)INM-6-20090406
000864951 980__ $$aI:(DE-Juel1)IAS-6-20130828
000864951 980__ $$aI:(DE-Juel1)INM-10-20170113
000864951 980__ $$aUNRESTRICTED
000864951 981__ $$aI:(DE-Juel1)IAS-6-20130828