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Wissenschaftler am Peter Grünberg Institut/Jülich Centre for Neutron Science un-
tersuchen in Experimenten und Simulationen Form und Dynamik von Materialien wie
Polymeren, Zusammenlagerungen großer Moleküle und biologischen Zellen sowie die
elektronischen Eigenschaften von Festkörpern. Für die Präsentation der in diesem Zu-
sammenhang anfallenden Forschungsergebnisse in Vorträgen und Veröffentlichungen
müssen häufig dreidimensionale Strukturen in Echtzeit dargestellt werden.
Bei der Darstellung besagter Strukturen wird bislang in GR3 auf OpenGL, die Spe-

zifikation einer Programmierschnittstelle zur hardwarebeschleunigten Erzeugung von
3D-Grafiken, zurückgegriffen. Die zur Nutzung von OpenGL notwendigen Hardware-
komponenten und Bibliotheken sind allerdings in Umgebungen wie Docker-Containern
oder Servern ohne grafische Ausgabe oft nur eingeschränkt oder gar nicht verfügbar.
Um dennoch eine performante dreidimensionale Visualisierung in besagten Umgebun-
gen zu ermöglichen, soll im Rahmen dieser Bachelorarbeit der Software-Renderer aus
[Rit19], der bislang nur bivariate Funktionen als Oberflächen visualisieren kann, in
seiner Funktionalität erweitert und optimiert werden, um verschiedene in Dreiecke
zerlegte dreidimensionale Strukturen in angemessener Zeit darstellen zu können. Die
dabei erzeugten Grafiken sollen zu der Ausgabe der bisher verwendeten, hardware-
beschleunigten Variante des GR3 nahezu identisch sein. Von besonderer Relevanz ist
hierbei die Minimierung der Laufzeit, welche sich durch verschiedene Techniken an
die durch die hardwarebeschleunigte Variante erzielte annähern soll. So wird in Zu-
kunft auf Systemen ohne ausreichende Grafikhardware automatisch auf den Software-
Renderer zurückgegriffen, ohne dass dies zu erkennbaren optischen Unterschieden oder
groben Differenzen in der Ausführungszeit führt.
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1. Einleitung
Häufig dienen Grafiken in wissenschaftlichen Veröffentlichungen der besseren Ver-
ständlichkeit und Überschaubarkeit der Erkenntnisse für den Leser. Zusätzlich helfen
sie den Wissenschaftlern selbst einen Überblick über unter Umständen große aus
Experimenten oder Simulationen resultierenden Datenmengen zu gewinnen. Die Er-
zeugung einer Grafik sollte möglichst performant sein, um hochauflösende Darstel-
lungen in angemessener Zeit mit verschiedenen Parametern generieren zu können.
Zudem sollte die Funktionalität völlig unabhängig vom verwendeten System ermög-
licht werden, um Portabilität und Benutzerfreundlichkeit zu steigern. GR3 erfüllt die
besagten Anforderungen bezüglich dreidimensionaler Grafiken. Zum Rendern wird
intern OpenGL verwendet, das auf dem verwendeten System in Form von Systembi-
bliotheken oder Grafikkartentreibern implementiert sein muss. Auf bestimmten Sys-
temen und in Docker-Containern ist jedoch häufig keine OpenGL Implementierung
verfügbar. Sie kann zwar durch Alternativen wie Mesa, worin der Software-Renderer
llvmpipe [VMw] enthalten ist, ersetzt werden, jedoch erfordert dies große Abhän-
gigkeiten die in GR3 nicht zuletzt wegen des Speicherbedarfs und der angestrebten
Plattformunabhängigkeit vermieden werden sollen.
Daher soll im Rahmen dieser Bachelorarbeit ein Software-Renderer entwickelt wer-

den, der die gesamte Verwendung von OpenGL in GR3 ersetzen kann. Wie ein-
gangs erwähnt ist die benötigte Laufzeit relevant, sodass die Funktionalität, die der
Software-Renderer umfasst, spezifisch auf GR3 abgestimmt und möglichst effizient
implementiert werden soll. Im Wesentlichen besteht der Rendering-Prozess aus der
Transformation Eckpunkten, die zu triangulierten Oberflächen gehören, und der mög-
lichst effizienten Rasterisierung der einzelnen daraus resultierenden Dreiecke. Die bis-
lang von OpenGL beziehungsweise dessen Implementierung erledigte Rasterisierung
zerfällt zum einen in das Durchlaufen der zur Darstellung des Dreiecks nötigen Pixel
und zum anderen in die Farbberechnung jedes Pixels unter Berücksichtigung der Be-
leuchtung und Farben der Eckpunkte. Durch Abstimmung der Implementierung auf
die Struktur des GR3 und zusätzlicher Verwendung verschiedener Techniken zur Par-
allelisierung soll die Laufzeit zur Erstellung und korrekten Füllung eines Farbpuffers,
der auch aus dem Renderingvorgang mit OpenGL hervorgeht, möglichst minimiert
werden.
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2. Entwicklung und Erweiterung
Der bislang entwickelte Software-Renderer aus [Rit19] unterstützt lediglich die Visua-
lisierung bivariater Funktionen als Oberflächen. Die vom Rasterisierer verursachten
Fehler werden im Folgenden analysiert und deren Ursache festgestellt, anschließend
sollen sie durch die Implementierung einer alternativen Rasterisierungsmethode ent-
fernt werden. Weiterhin soll die Funktionalität auf alle durch das GR3 darstellbaren
Szenen erweitert werden.
Im Zuge dessen wird das Prinzip des Zeichnens einzelner Dreiecksgitter aufgegriffen

und die die Berechnung einer Beleuchtung mit punktueller Lichtquelle implementiert.
Vom Software-Renderer soll ebenfalls Kantenglättung unterstützt werden, die analog
zur hardwarebeschleunigten Variante funktioniert.

2.1. Ansatz des bisherigen Rasterisierers
Um darzustellen, wieso ein alternatives Verfahren zur Rasterisierung implementiert
wird, wird hier zuerst kurz die Funktionsweise des bisherigen Verfahrens eingegangen.
Dadurch werden die Nachteile und Komplikationen aufgedeckt, welche Ursache für die
Neuimplementierung sind.
Die ältere Implementierung arbeitet mit dem Bresenham-Algorithmus, der zum

Zeichnen von Geraden auf Rasteranzeigen im Jahre 1962 entwickelt wurde. Dieser
ist sehr effizient und minimiert Rundungsfehler, da intern ausschließlich diskrete Ko-
ordinaten verwendet werden [Bre62]. In der vorherigen Implementierung baut die
Rasterisierung eines Dreiecks auf der Rasterisierung der Kanten mit dem Bresenham-
Algorithmus auf. Zur Füllung des Dreiecks werden dazu alternierend die gegenüberlie-
genden Kanten als Linien gezeichnet und zwischen den dadurch entstehenden Begren-
zungen alle Pixel eingefärbt. Somit füllt sich das Dreieck zeilenweise von unten nach
oben. Die durch den Linienzug entstandenen Grenzen sind in der folgenden Abbildung
2.1 blau markiert, die dazwischen eingefärbten Pixel dunkelgrau.

+ + + + + + + + + +
+ + + + + + + +

+ + + + + +
+ + + +

+•
A

•B •C

Abbildung 2.1.: Rasterisierungsvorgang mit dem Bresenham-Algorithmus
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2.1. Ansatz des bisherigen Rasterisierers

2.1.1. Kritik an der Rasterisierung des Bresenham-Algorithmus

Für den Bresenham-Algorithmus im Zusammenhang mit der Darstellung von Dreie-
cken auf Rasteranzeigen werden in dieser Implementierung die Eckpunkte zunächst
ihrer y-Koordinate nach aufsteigend sortiert, damit das Dreieck von unten nach oben
rasterisiert werden kann. Dies führt zu einem Anstieg der benötigten Rechenzeit.
Des Weiteren ist zu berücksichtigen, dass die Veröffentlichung des Bresenham-

Algorithmus aus dem Jahre 1962 stammt. Moderne Rechnerarchitekturen unterstüt-
zen Gleitkommaoperationen mit einer höheren Genauigkeit, als für die Berechnung
benötigt wird, was damals nicht der Fall war. Außerdem sind die Rechenoperationen
für Gleitkommazahlen üblicherweise genauso schnell, wie die für Ganzzahlen. Die Vor-
teile, die den Bresenham-Algorithmus als Linienzugalgorithmus auszeichnen, entfallen
also wegen des technischen Fortschrittes.
Das eigentliche Kernproblem und damit auch Hauptgrund für die Implementie-

rung eines neuen Algorithmus sind jedoch falsche Ergebnisse, die in dem Linienzugal-
gorithmus begründet sind. Das Kriterium bei der Rasterisierung eines Dreiecks, ob
ein Pixel dazugehört beziehungsweise eingefärbt werden soll, besteht darin, ob des-
sen Mittelpunkt innerhalb des Dreiecks liegt. Beim Linienzug durch den Bresenham-
Algorithmus ist im Gegensatz dazu das Kriterium, wie groß der Abstand der aus dem
Pixel austretenden Linie von den beiden nächsten potentiell einzufärbenden Pixeln
ist. In der folgenden Abbildung 2.2 sind die Pixel rot eingefärbt, die der Bresenham-
Algorithmus zwar als Einzufärbende markiert, aber letztendlich nicht eingefärbt wer-
den, da ihr Pixelmittelpunkt sich nicht innerhalb des Dreiecks befindet.

+ + + + + + + + + +
+ + + + + + + +

+ + + + + +
+ + + +

+•
A

•B •C

Abbildung 2.2.: Fehler des Rasterisierungsvorgangs mit dem Bresenham-Algorithmus

Die Abbildung untermauert, dass die Wahl dieses Algorithmus nicht optimal ist.
Die rot markierten Pixel werden in der Implementierung nicht eingefärbt, da dort min-
destens eine der baryzentrischen Koordinaten (vgl. Abschnitt 3.2) negativ ist [Rit19].
Werden diese trotzdem eingefärbt, resultiert beispielsweise in nicht passend darge-
stellten Rundungen, wie rechts in Abbildung 2.3 zu sehen. Links ist die korrekt durch
OpenGL rasterisierte Variante zu sehen.
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2. Entwicklung und Erweiterung

Abbildung 2.3.: Darstellung einer bivariaten Funktion als Oberfläche

Gleichzeitig können auch Lücken in der Zeichnung auftreten, falls ein Dreieck aus
nur einem Pixel besteht. Dies könnte zum Beispiel wie in Abbildung 2.4 aussehen,
wobei M der Mittelpunkt des Pixels und A, B und C die Eckpunkte des Dreiecks
sind:

•
A

•B •C

•M

Abbildung 2.4.: Lücke im Rasterisierungsvorgang mit dem Bresenham-Algorithmus

Da der Mittelpunkt des Pixels innerhalb des Dreiecks liegt, muss dieser Pixel ent-
sprechend der Farbe des Dreiecks eingefärbt werden. Der Bresenham-Algorithmus
vollzieht jedoch keinen Schritt des Linienzugs, sodass es schlussendlich nicht zu einer
Einfärbung kommt.
Außerdem wurden in der bisherigen Implementierung des Rasterisierers die Koor-

dinaten jedes Eckpunktes als Ganzzahl hinterlegt. Jeder Eckpunkt wurde dabei zu
Beginn in diese Darstellung ohne Nachkommastellen überführt. Diese Speicherung
ist überflüssig, weil alle Berechnungen in Fließkomma-Arithmetik stattfinden und zur
diskreten Indizierung der Farbpuffer in Ganzzahlen umgewandelt werden. Zudem wird
dadurch viel Speicherplatz belegt.

2.2. Rasterisierung mit umgebendem Viereck
Die im vorherigen Abschnitt beschriebene Rasterisierungsmethode soll durch eine ef-
fiziente und korrekte Alternative ersetzt werden. Eine mögliche Methode, um eine
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2.2. Rasterisierung mit umgebendem Viereck

korrekte Rasterisierung zu gewährleisten, besteht darin, bei jedem Dreieck für alle
vorhanden Pixel zu prüfen, ob ihr Mittelpunkt innerhalb des Dreiecks fällt. Diese
Prüfung kann mittels baryzentrischer Koordinaten für jeden Pixel erfolgen, welche
mindestens einen negativen Wert aufweisen, falls jener Pixel nicht innerhalb des Drei-
ecks liegt.
Um den Rechenaufwand zu reduzieren, wird die zu prüfende Fläche zunächst auf

das Rechteck begrenzt, welches das Dreieck exakt umgibt und alle Pixel enthält, die
zur Einfärbung in Frage kommen [Hen+11]. Bei allen anderen Pixel ist es unmög-
lich, dass deren Mittelpunkte innerhalb des Dreiecks liegen. Aus diesem Grund ist
deren Prüfung und die damit zusammenhängenden, aufwendigen Rechenoperationen
nicht von Nöten. Es gilt: Je kleiner das Dreieck, desto größer die erzielte Ersparnis.
Beispielsweise erzielt ein Dreieck, dass die Hälfte des Bildschirmes einnimmt keine
Ersparnis. Im Gegensatz dazu bezweckt diese Methode bei einem Dreieck, welches
lediglich einen Pixel bedeckt, eine Ersparnis von allen Pixeln, die bei der Prüfung
ohnehin negative baryzentrische Koordinaten liefern würde und den Pixel nicht ein-
färben würde.
Die obere Kante des besagten umgebenden Rechtecks (sog. Bounding Box) befindet

sich auf der Höhe des höchsten Eckpunktes des Dreiecks und die untere Kante auf der
des tiefsten Eckpunktes. Analog dazu werden die seitlichen Begrenzungen durch die
minimalen und maximalen x-Werte der Eckpunkte ermittelt. So ein Rechteck könnte
zum Beispiel wie Abbildung 2.5 zeigt aussehen:

•A

•B

•C

Abbildung 2.5.: Das kleinste ein Dreieck umgebende Rechteck, in dem alle potentiell
einzufärbenden Pixel liegen

Durch diese erste, intuitive Optimierung wird die Berechnung der baryzentrischen
Koordinaten aller restlichen Pixel bezüglich dieses Dreiecks gespart. In dem Rechteck
befinden sich meist doppelt so viele Pixel wie in dem Dreieck, also ist die Anzahl der
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2. Entwicklung und Erweiterung

Überprüfungen doppelt so groß wie die Anzahl der Pixel im Dreieck. Für die Pixel im
Dreieck müssen ohnehin Koordinaten zur Interpolation berechnet werden, wichtig ist
die Reduzierung der Anzahl der restlichen, negativ geprüften Pixel.

2.3. Zeichnen eines Dreiecksgitters
Der Software-Renderer des GR3 war bisher nur in der Lage bivariate Funktionen als
Oberflächen zu visualisieren, welche vom Nutzer mit Hilfe des Aufrufs von gr3_surface
erzeugt werden. Es können aber auch andere dreidimensionale Strukturen wie zum
Beispiel Molekülgitter, Pendel oder ähnliches hardwarebeschleunigt visualisiert wer-
den. Im Rahmen der Bachelorarbeit soll diese Funktionalität ebenfalls durch den
Software-Renderer unter möglichst geringem Verlust der Performance unterstützt wer-
den.

(a) Erstes Dreiecksgitter in der Szene (b) Zweites Dreiecksgitter in der Szene

(c) Drittes Dreiecksgitter in der Szene (d) Viertes Dreiecksgitter in der Szene

Abbildung 2.6.: Darstellung der einzelnen Dreiecksgitter

Eine dreidimensionale Grafik kann in GR3 aus mehreren Dreiecksgittern bestehen
[Rhi12], welche von GR3 beim Aufruf verschiedener Methoden aus den Ausgangsda-
ten erzeugt werden. Ein Dreiecksgitter enthält ein Array mit Eckpunkten, die sich
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2.3. Zeichnen eines Dreiecksgitters

auf der darzustellenden Struktur befinden, und Informationen darüber, welche dieser
Eckpunkte zusammen ein Dreieck bilden. Die Information der Zusammengehörigkeit
der Dreiecke ist in der Regel durch die Reihenfolge gegeben, in der die Eckpunkte hin-
terlegt sind. Sie kann aber auch optional in einem Indexpuffer gespeichert sein, der
beliebige Eckpunkte referenzieren kann und daher eine mehrfache Nutzung gleicher
Eckpunkte ermöglicht. Ein Dreiecksgitter bildet häufig ein in der Szene vorhandenes
Objekt, wie Abbildung 2.6 verdeutlichen soll.
Zudem sind in jedem Dreiecksgitter die zu den Eckpunkten gehörenden Normalen

und Farben hinterlegt, welche im Weiteren zur Darstellung beitragen, indem sie die
Beleuchtung und die Farbe der Dreiecke und damit auch der Pixel beeinflussen. In ei-
nem Dreiecksgitter sind drei Fließkommawerte hinterlegt, mit denen die Intensität der
Farbkanäle rot, grün und blau RGB jedes Pixels reguliert werden kann. Dadurch kann
beispielsweise nur ein Farbkanal hervorgehoben oder die gesamte Szene verdunkelt
werden.
Der Software-Renderer erhält einen mit einer Hintergrundfarbe gefüllten Farbpuffer

und eine Liste mit Dreiecksgittern, mit deren Hilfe dieser Farbpuffer so gefüllt wird,
dass ihre Visualisierung in der erwünschten Grafik resultiert. Dazu wird über die Drei-
ecksgitter iteriert und jedes nacheinander ohne Hardwarebeschleunigung in besagten
Farbpuffer gezeichnet, sodass nach jedem abgearbeiteten Dreiecksgitter Informatio-
nen in jenem hinzukommen. In der resultierenden Grafik sind die Dreiecksgitter so
gemischt, das bei jedem Pixel die Farbinformation des Dreiecksgitters hinterlegt ist,
das sich am weitesten vorne befindet. In diesem Fall sieht die Grafik (Abbildung 2.7)
wie folgt aus.

Abbildung 2.7.: Alle Dreiecksgitter der Szene vereint

Innerhalb einer Szene können verschiedene Transformationsmatrizen auf die Eck-
punkte verschiedener zu dieser Szene gehörenden Dreiecksgitter angewandt werden.
Die Lichtquelle hat immer denselben Ursprung, da schließlich die gesamte Szene aus
genau einer Position beleuchtet wird.
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2. Entwicklung und Erweiterung

2.4. Automatische Auswahl des Software-Renderers
Der Zweck des Software-Renderers ist, wie eingangs erwähnt, die Unterstützung der
durch die GR3-Grafikbibliothek möglichen Visualisierungen in Umgebungen, in denen
nicht auf die dazu nötige Hardware zugegriffen oder jene nicht angemessen ersetzt
werden kann. Wünschenswert ist also, dass die GR3-Grafikbibliothek selber anhand
der Umgebung, in der sie verwendet wird, entscheidet, ob mit dem Software-Renderer
oder mit OpenGL gezeichnet wird.
GR3 entscheidet bislang abhängig vom Betriebssystem durch Präprozessor-Makros

zur Übersetzungszeit, wie OpenGL initialisiert werden soll. Die Abfrage des verwen-
deten Betriebssystems geschieht über jeweils auf solchen definierten Makros. Auch
das Vorhandensein eines Backends für OpenGL kann über Makros abgefragt werden.
Fällt diese Abfrage negativ aus, wird automatisch auf den Software-Renderer zurück-
gegriffen und eine Warnung ausgegeben. Die Ergebnisse und die Laufzeit sollen sich
jedoch so wenig wie möglich unterscheiden.

2.5. Beleuchtung
Bis jetzt war der Software-Renderer nur in der Lage eine weiße, gleichmäßige und
maximale Ausleuchtung aller Flächen beziehungsweise Dreiecke zu ermöglichen. Dies
ist eine Variante des Ambient Lighting aus [Vri14], bei welchem eine omnidirektionale
Lichtquelle mit konstanter Intensität und fester Farbe die Szene ausleuchtet. Diese
einfachste Art der Beleuchtung kommt zum Einsatz, wenn ein Überblick über eine
Szene und die darin enthaltenen Objekte gewonnen werden soll. Zur Realisierung ist
dabei lediglich das Multiplizieren jeder Komponente der Farbe eines Pixels mit ge-
gebenen Konstanten notwendig, die dann die Farbintensität und das Mischverhältnis
bestimmen.

(a) Ambient Lighting (b) Diffuse Lighting

Abbildung 2.8.: Zwei Beleuchtungsmöglichkeiten derselben Szene
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2.5. Beleuchtung

In einer dreidimensionalen Szene kann jedoch die Position und Farbe einer punk-
tuellen Lichtquelle und dadurch die Richtung des Lichteinfalls definiert werden, die
dann im Diffuse Lighting [Vri14] resultiert. Abhängig davon sind Flächen, die nahezu
senkrecht zum Lichteinfall liegen, sehr intensiv beleuchtet und solche, deren Rückseite
beleuchtet wird, dunkel. Durch diesen Effekt wirkt die Szene wesentlich realistischer,
weil eine bessere Wahrnehmung der Tiefe entstehen kann und Schattierungen einen
dreidimensionalen Eindruck erwecken. Die hardwarebeschleunigte Variante des GR3
unterstützt diese Art der Beleuchtung [Rhi12]. Im direkten Vergleich unterscheiden
sich die Beleuchtungsvarianten für ein konkretes Beispiel wie in Abbildung 2.8 darge-
stellt.
Aus mathematischer Sicht ergibt sich die Beleuchtungsstärke an einer konkreten

Stelle abhängig vom Winkel zwischen der Richtung des Lichteinfalls und dem ortho-
gonal auf der Stelle stehenden Vektors [Vri14]. Je größer der Winkel, desto weniger
wird diese Stelle beleuchtet. Wird die Rückseite einer Stelle beleuchtet, beträgt der
Winkel zwischen der Normale und dem Lichteinfall mehr als 90°, sodass diese dann
gänzlich unbeleuchtet bleibt. In der Regel kommen mehrere Beleuchtungstechniken
in Kombination zum Einsatz, jedoch unterstützt GR3 ausschließlich Kombinationen
aus dem Diffuse Lighting und dem Ambient Lighting.

2.5.1. Transformation der Normalen

Zu jedem Eckpunkt ist ein Normalenvektor in Local-Space-Koordinaten (vgl. [Rit19])
gegeben, welcher senkrecht auf diesem steht. Bevor diese jedoch zur Berechnung der
Beleuchtungseffekte verwendet werden können, müssen Transformationen vorgenom-
men werden, bis schließlich View-Space-Koordinaten vorliegen, in denen die Berech-
nung der Farbe der Pixel, in die die Beleuchtung einfließt, stattfindet. Um die Ko-
ordinaten in den View-Space zu transformieren kann nicht einfach mit der Model-
und anschließend mit der View-Matrix multipliziert werden, wie es bei Eckpunkten
möglich ist.
Im Software-Renderer des GR3 werden analog zu OpenGL homogene Koordina-

ten für die Hinterlegung von Orts- und Richtungsvektoren verwendet, sodass die ei-
gentlich dreidimensionalen Koordinaten um eine vierte Dimension erweitert werden.
Bei den Ortsvektoren, wie zum Beispiel Eckpunkten, hat die vierte Komponente den
Wert Eins, damit durch lineare Operationen, wie eine Matrizenmultiplikation, eine
Translation formuliert werden kann. Da die Normalen Richtungsvektoren und kei-
ne Ortsvektoren sind, ist deren letzter Wert Null, sodass Translationen, die in der
vierten Spalte der Model-Matrix ausgedrückt werden, keinen Einfluss nehmen, weil
Richtungen unabhängig von ihrer Ausgangsposition sind. Daher ist nur der Inhalt der
oberen linken 3×3 Matrix relevant, in der Rotationen und Skalierungen vorgenommen
werden.
Es können durch eine Matrix achsenweise verschiedene Skalierungen, also nicht

orthonormale Transformationsmatrizen, zu einer Änderung des Normalenvektors füh-
ren. Veranschaulicht wird dieser Zusammenhang in der folgenden Abbildung
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Abbildung 2.9.: Achsenweise unterschiedliches Skalieren und der Einfluss auf den Nor-
malenvektor

Skaliert wurden die Eckpunkte hier beispielsweise mit der Matrix (obere linke 3×3-
Matrix):

M =
⎛
⎜
⎝

3
4 0 0
0 1 0
0 0 1

⎞
⎟
⎠

Der Normalenvektor hat sich durch die Skalierung verändert, eine Verwendung vom
ursprünglichen Normalenvektor bei der Berechnung der Beleuchtung würde zu einem
falschen Ergebnis führen. Dies liegt darin begründet, dass im Unterschied zu den Eck-
punkten der Normalenvektor nicht die Differenz zwischen zwei Punkten beschreibt,
wie es zum Beispiel bei der Kante in einem Dreieck der Fall ist, sondern als ein zur
Oberfläche orthogonaler Richtungsvektor definiert wird.
Zur korrekten Berechnung wird in diesem Fall statt der ModelView-MatrixM (Pro-

dukt aus Model- und View-Matrix) die sogenannte Normal-Matrix N [Len02] verwen-
det.
Sei v⃗ die Richtung, auf der der Normalenvektor n⃗ senkrecht steht. Dann muss gelten:

0 = n⃗ ⋅ v⃗ = (Nn⃗) ⋅ (Mv⃗)

= (Nn⃗)T (Mv⃗)

= n⃗TNTMv⃗

Nach der Voraussetzung gilt, dass n⃗ ⋅ v⃗ = 0, also wenn gilt, dass NTM = I, ist genau
diese erfüllt. Aus der Bedingung ergibt sich aus der oberen linken 3 × 3 Matrix der
ModelView-Matrix M die Formel für die gesuchte Normal-Matrix N :

I = NTM

⇔ N = (M−1)T

Mit dieser werden alle Normalenvektoren vor deren Interpolation und der darauf
folgenden Berechnung der Farbe jedes Pixels multipliziert, sodass die Normalen nach
diesem Schritt in View-Space Koordinaten vorliegen. Für das genannte Beispiel wäre
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dies

N =

⎛
⎜
⎜
⎝

4
√
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⎞
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Damit gilt in Abbildung 2.9 die Gleichung Nn⃗ = α ⋅ n⃗′, also erzeugt diese Transforma-
tion den korrekten Normalenvektor, der normiert dargestellt ist.

2.5.2. Interpolation der Normalen
Genau wie die Farben sind die Normalen nur an den Eckpunkten aller Dreiecke defi-
niert. Zum korrekten Einfärben wird jedoch für jeden Pixel nicht nur die interpolierte
Farbe, sondern auch der zum Pixelmittelpunkt orthogonale Vektor benötigt, der die
Farbe durch das Diffuse Lighting beeinflusst. Die baryzentrischen Koordinaten λi

müssen ohnehin für spätere Berechnungen zur Interpolation der Tiefe und Farbe be-
rechnet werden. Außerdem wurde bei der perspektivisch korrigierten Interpolation
der Farbe die Interpolation der invertierten Tiefenwerte

z′p = λ0
1
zv0

+ λ1
1
zv1

+ λ2
1
zv2

durchgeführt. Der Wert z′p wird im Anschluss verwendet, um auch die Normalen per-
spektivisch korrigiert interpolieren zu können, da im Screen Space nicht der Norma-
lenvektor np selbst, sondern np

−z linear auf der Oberfläche des Dreiecks abhängig von
den Normalen der Eckpunkte variiert [Rit19]. Analog können mit den selben Wer-
ten auch die in den View-Space transformierten Normalen perspektivisch korrigiert
interpoliert und pixelweise bereit gestellt werden.

n⃗p
′ = λ0

nv0

zv0

+ λ1
nv1

zv1

+ λ2
nv2

zv2

⇒ np =
n′p
z′p

2.5.3. Berechnung der Farbe unter Berücksichtigung des
Lichteinfalls

Bei der Rasterisierung werden zur Einfärbung der Pixel die Farben, die ausschließlich
an den Eckpunkten der Dreiecke definiert sind, perspektivisch korrigiert interpoliert.
Hinzu kommt nun die Berücksichtigung des Lichteinfalls. Dabei wird ein Pixel umso
intensiver beleuchtet, je mehr dessen Normalenvektor in die Richtung des Lichteinfalls
zeigt beziehungsweise je kleiner der Winkel zwischen diesen beiden Vektoren ist.
Der Normalenvektor ist durch Interpolation der Normalen der Eckpunkte gegeben.

Die Richtung des Lichts l kann in World-Space-Koordinaten vorgegeben werden und
muss ebenfalls wie die Normalenvektoren in den View-Space transformiert werden.
Ist sie nicht definiert, wird von einer Lichtquelle an der Position des Betrachters aus-
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2. Entwicklung und Erweiterung

gegangen, welches in View-Space-Koordinaten dem Vektor l = (0,0,1)T entspricht.
Aufgrund der Einfachheit dieses Standardvektors im View-Space findet die Berech-
nung in diesen Koordinaten statt, da sonst in einem anderen Koordinatensystem der
entsprechende Vektor ermittelt werden müsste.
Die folgende Erläuterung ist aus [Vri14] entnommen. Sind also nun sowohl die

Richtung des Lichteinfalls l⃗ und der Normalenvektor n⃗p eines Pixels bekannt, kann
der Cosinus des Winkel fac zwischen diesen beiden Vektoren mit dem Skalarprodukt
aus den normierten Vektoren berechnet werden.

fac = l

∣∣l∣∣
⋅
np

∣∣np∣∣

Ist der Wert fac < 0, so wird die Fläche vom Licht nicht beeinflusst und trifft auf die
Rückseite, sodass fac = 0 gesetzt wird, was einer schwarzen Fläche entspricht. Andern-
falls wird der Wert fac übernommen und dient als Multiplikator aller Farbkomponen-
ten. Somit ergibt sich die Farbe c⃗p

′ eines einzufärbenden Pixels nach Multiplikation
mit der durch perspektivisch korrigierte Interpolation ermittelten Farbe c⃗p

facdif = max(fac,0)
c⃗p
′ = (facdif + facamb) ⋅ cp

Der Wert facamb bezieht sich auf die Stärke des Ambient Lighting, hat aber standard-
mäßig den Wert Null. Um die Farbe des Lichtes zu berücksichtigen, die vom Nutzer
definiert werden kann, wird zum Schluss nochmal der Vektor c⃗p

′ komponentenweise
mit einem Vektor multipliziert, welcher in jeder Komponente eine Intensität aus [0,1]
für jede Farbe des Lichtes enthält.

2.6. Kantenglättung

2.6.1. Ziel
In der hardwarebeschleunigten Variante des GR3 wird Kantenglättung unterstützt.
Die darin implementierte Variante nennt sich Supersample Anti-Aliasing [Hug+14],
kurz SSAA. Ziel ist es, unerwünschte optische Effekte, die auf einem Pixelraster ent-
stehen, zu minimieren.
Letztendlich besteht der Rasterisierungsvorgang aus der Zuweisung einer Farbe für

jeden Pixel. Diese Farbe wird dabei berechnet, indem die Bildbeschreibung ausschließ-
lich an den Mittelpunkten der Pixel abgetastet wird und für diese Koordinaten die
resultierende Farbe berechnet dem Pixel zugewiesen wird. Alle Punkte des Bildes au-
ßer die Mittelpunkte der Pixel fließen gar nicht in die Berechnung beziehungsweise
Darstellung ein (vgl. Abbildung 2.10 (a)), sodass Dreiecksgitter, die sich innerhalb
eines Pixels befinden, aber dessen Mittelpunkt nicht überschneiden überhaupt keine
Berücksichtigung in der Visualisierung finden. Bei regelmäßiger Anordnung kleiner
Dreiecksgitter gehen all diese Daten verloren, was einer der unerwünschten Effekte
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ist, die SSAA zu beheben versucht. Besonders ins Gewicht fallen kann dieser Effekt
bei der Darstellung eines schachbrettähnlichen Musters, wenn zwischen zwei Abtast-
punkten ein ganzes Feld verloren geht (vgl. Abbildung 2.10 (b)) und deswegen zwei
gleiche Farben in zwei Reihen aufeinander folgen. In derartigen Fällen wird die Grafik
als unterabgetastet bezeichnet. Im Allgemeinen kann nie die exakte Darstellung einer
Bildbeschreibung garantiert werden, da sonst unendlich viele Abtastungspunkte und
Pixel notwendig wären, um theoretisch beliebig kleine Dreiecksgitter genau darstellen
zu können.

+

(a) Dreieck innerhalb eines Pixels,
das durch die Abtastung nicht re-
gistriert wird

+

+

+

(b) Abtastung eines schachbrettähn-
lichen Musters unter Verlust ei-
nes Feldes

Abbildung 2.10.: Unerwünschte Effekte ohne Kantenglättung

Ein weiterer negativer Effekt von Rastergrafiken ist der Treppeneffekt, welcher das
kantige Erscheinungsbild gerasterter Objekte beschreibt. Besonders präsent wird die-
ser Effekt in Animationen, weil sich dort Teile des Bildes ruckartig bewegen oder gar
zu flimmern scheinen.

(a) Ohne Kantenglättung (b) Mit Kantenglättung

Abbildung 2.11.: Die selbe Szene ohne und mit Kantenglättung (Downsampling der
vierfachen Auflösung) zur Verdeutlichung des Treppeneffekts
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2. Entwicklung und Erweiterung

2.6.2. Funktionsweise
Ohne SSAA wird die Bildbeschreibung an allen Pixelmittelpunkten des schlussendlich
berechneten Bildes abgetastet, um eine möglichst gleichmäßige und genaue Darstel-
lung zu ermöglichen. Der Pixel wird in der Farbe eingefärbt, die die Bildbeschreibung
in dessen Mittelpunkt annimmt.
Mit SSAA wird die Bildbeschreibung innerhalb eines Pixels an n gleichmäßig ver-

teilten Positionen ausgewertet. Durch einen Rekonstruktionsfilter wird anschließend
aus diesen n Farbinformationen der abgetasteten Stellen eine Farbe berechnet und
dem Pixel schlussendlich zugewiesen. Dabei unterscheiden sich verschiedene Arten
des Supersampling sowohl durch die unterschiedlichen Anordnungen und Anzahlen
der Abtastpositionen pro Pixel, als auch durch die Wahl des Rekonstruktionsfilters.
Für gewöhnlich besteht dieser aber aus der Mittelung aller berechneten Farben der
zu einem Pixel gehörigen Abtastpunkte. Dabei können sich Pixel auch Abtastpunkte
teilen, wenn sie auf den Grenzen liegen. Dies wird Sample Sharing genannt [Gra16].

2.6.3. Realisierung
In GR3 existiert die Funktion gr3_setquality(int quality), mit der die Anzahl
der Abtastpunkte pro Pixel und dadurch die Qualität der erzeugten Grafik festgelegt
wird. Beim Aufruf ersetzt GR3_QUALITY_OPENGL_<q>X_SSAA den Parameter quality,
wobei qWerte aus der Menge {2,4,8,16} annehmen kann. Letzten Endes resultiert dies
in q2 Abtastungspunkten pro Pixel, welche gleichmäßig verteilt werden. [Hug+14]

+

+

+

+

(a) Abtastpunkte innerhalb eines Pi-
xels für q = 2

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

(b) Abtastpunkte innerhalb eines Pi-
xels für q = 4

Abbildung 2.12.: Abtastpunkte für verschiedene q, an denen der Farbwert errechnet
und zusammen mit den anderen gemittelt dem Pixel zugewiesen
wird

Wird diese Methode vom Nutzer aufgerufen und mit der Qualität q seiner Wahl
spezifiziert, wird die Grafik intern zunächst in q2-facher Auflösung gerendert, d.h.
mit q-facher Breite und Höhe. So wird pro Abtastpunkt ein Pixel erzeugt, in des-
sen Mitte sich der Abtastpunkt befindet. Aus dieser höher aufgelösten Grafik werden
nun die Farbinformationen von den Quadraten mit jeweils q2 Pixeln mittels Rekon-
struktionsfilters zusammengefasst, indem der Wert jedes Farbkanals von jedem dieser
Pixel addiert und dann mit 1

q2 multipliziert wird. Die daraus resultierende Farbe wird
dem entsprechenden Pixel der fertigen Grafik, die wiederum nicht q2-fach sondern
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einfach aufgelöst ist, zugewiesen. Dieser Vorgang simuliert das mehrfache Abtasten
der Bildinformation pro Pixel in der endgültigen Grafik.

(a) Höher aufgelöste Grafik mit q = 2 (b) Resultierendes Ergebnis durch
Zusammenfassung der höher auf-
gelösten Grafik

Abbildung 2.13.: Übersetzung der q2 = 4-fach aufgelösten Grafik zur Endgrafik (ein-
fach aufgelöst)
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3. Optimierung

Wie in Kapitel 1 erwähnt soll die Laufzeit des Software-Renderers möglichst gering
sein, um aus Datenmengen resultierende Darstellungen möglichst in Echtzeit dar-
stellen zu können. Dazu wird im folgenden die benötigte Zeit für den bislang nicht
parallelen Renderingprozess reduziert. Im Fokus sind dabei die Vermeidung aufwän-
diger Speicheroperationen, die effizientere Berechnung baryzentrischer Koordinaten
und vor allem die Beschleunigung der Rasterisierung.

3.1. Reduktion von Speicheroperationen

Die Koordinaten der Eckpunkte sowie deren Farben und Normalenvektoren werden
vom Software-Renderer als Array aus float Werten empfangen. Dabei wird zudem
ein Farb- und Tiefenpuffer, welche sich auf dem Heap befinden, zur Verfügung ge-
stellt, in denen pro Pixel vier Farbkanäle beziehungsweise ein Tiefenwert hinterlegt
werden können. Bevor die Eckpunkte unterschiedliche Transformationen durchlau-
fen, werden sie in ein struct vertex_fp umgewandelt. Dieses besitzt als Attribute
die vier Koordinaten und ein struct color (Farbe) sowie ein struct vector (Nor-
malenvektor), sodass ein Eckpunkt mitsamt aller seiner Informationen auf diese Art
hinterlegt werden kann.
Der Kopiervorgang ist nötig, da auf den Eckpunkten verschiedene Transformatio-

nen vorgenommen werden, welche mit diesen Datentypen arbeiten. Dazu gehören
sowohl die auf den Eckpunkten operierenden Model-, View-, Perspective- und View-
port-Transformationen, als auch die Transformationen für die Beleuchtung.
Die Verwendung von Speicherplatz auf dem Heap muss minimiert werden, da die da-

mit zusammenhängenden Allokieroperationen langsam sind [AS96]. Übergeben wer-
den an alle Methoden ausschließlich Zeiger, da das in der Programmiersprache C ver-
wendete Call-by-Value ansonsten bei jedem Aufruf eine Kopie erzeugt, was zu Lasten
der Effizienz fällt. Vor dieser Optimierung war die Ausführungszeit deutlich erhöht,
konnte aber durch diese simple Änderung verringert werden.
Eine Ausnahme bildet dabei die Übergabe von baryzentrischen Koordinaten an eine

Methode. Hierbei werden die drei Werte einzeln übergeben, da sich dies als schneller
herausstellte, als die Übergabe eines Zeigers auf ein Feld mit drei Werten. Ursache
dafür ist, dass die mehrfache Dereferenzierung die Ausführungszeit erhöht.
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3.2. Berechnung baryzentrischer Koordinaten
Baryzentrische Koordinaten sind im Falle eines Dreiecks drei Werte λ0, λ1 und λ2. Die
Koordinaten werden genutzt, um mithilfe der Eckpunkte V0, V1 und V2 des Dreiecks
einen beliebigen Punkt P in der Form P = λ0V0 + λ1V1 + λ2V2 auf der Dreiecksflä-
che darstellen zu können. Im Wesentlichen besteht der Aufwand der Überprüfung,
ob ein Pixel zum Zeichnen eines Dreiecks eingefärbt werden muss darin, die baryzen-
trischen Koordinaten für dessen Mittelpunkt zu berechnen. Ist mindestens eine der
Koordinaten negativ, liegt der Pixelmittelpunkt außerhalb des Dreiecks.
Selbst wenn die Überprüfung nicht nötig wäre, soll der Aufwand zur Berechnung

baryzentrischer Koordinaten möglichst gering sein, da diese zur Tiefen-, Farb- und
Normaleninterpolation dienen. Zur Berechnung der Koordinaten für einen Punkt P
werden die Teilflächen betrachtet, die durch Verbinden dieses Punktes mit den drei
Eckpunkten entstehen. Der Anteil einer Teilfläche an der Gesamtfläche des Dreiecks
entspricht der baryzentrischen Koordinate des Punktes P für den gegenüber der Teil-
fläche liegenden Eckpunkt. Daraus folgt die Darstellung des Punktes in der Form

P =
AV0

Ages

V0 +
AV1

Ages

V1 +
AV2

Ages

V2 (3.1)

die in der folgenden Grafik veranschaulicht wird.

•V0

•V1

•V2

•P

Abbildung 3.1.: Teilflächen zur Berechnung baryzentrischer Koordinaten

Das doppelte des Flächeninhalts AVi
jedes Teildreiecks ergibt sich aus dem Betrag

des Kreuzproduktes von zwei seiner Kanten. Der Wert ist negativ, falls P außer-
halb des Gesamtdreiecks liegt. Zum Beispiel gilt für das Teildreieck gegenüber des
Eckpunktes V0

AV0 = ∣∣
ÐÐ→
V1P ×

ÐÐ→
V1V2∣∣

= (V2y − V1y)(Px − V1x) − (V2x − V1x)(Py − V1y)

= (V1y − V2y)Px + (V2x − V1x)Py + (V1xV2x − V1yV2x)

= A0 ⋅ Px +B0 ⋅ Py +C0 = AV0(Px, Py)

Die Idee dieser Optimierung stammt aus [Gie13]. Die Eckpunkte Vi sind für jedes
Dreieck konstant, sodass eine lineare Funktion in P entsteht. Der Algorithmus ar-
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3. Optimierung

beitet jeden potentiell zum Dreieck gehörenden Pixel ab und vollzieht daher inner-
halb jeder Zeile Schritte in x-Richtung nach rechts beziehungsweise beim Wechsel
der Zeile in y-Richtung nach oben. Zum Beispiel wird die Teilfläche AV0 des rechten
Nachbarn eines Pixels P dabei durch AV0(Px + 1, Py) berechnet, analog dazu die des
oberen Nachbarn mittels AV0(Px, Py + 1). Auf Grund der Linearität der Funktion gilt
AVi

(Px + 1, Py) −AVi
(Px, Py) = Ai beziehungsweise AVi

(Px, Py + 1) −AVi
(Px, Py) = Bi,

was darin resultiert, dass die baryzentrischen Koordinaten inkrementell berechnet
werden können.
Dazu werden zunächst alle drei Teilflächen des ersten zu prüfenden Pixels mittels

AVi
(Px, Py) berechnet. Sollen als nächstes die Koordinaten des rechten Nachbarn er-

mittelt werden, so werden alle Teilflächen AVi
um den Wert Ai erhöht, während analog

dazu die des oberen Nachbarn sich durch Erhöhung jeder Teilfläche um Bi ergeben.
Bislang wird die Berechnung der Dreiecksfläche Ages und der Teilflächen AVi

bei der
Berechnung der Koordinaten jedes Pixels erneut gemäß Formel 3.1 durchgeführt. Die
Fläche Ages (das doppelte der Gesamtfläche des Dreiecks), muss nur ein Mal berechnet
und hinterlegt werden und resultiert ebenfalls aus dem Kreuzprodukt zweier Kanten
des Dreiecks. Durch diese alternative Art baryzentrische Koordinaten zu berechnen
sind nun für die Berechnung aller Teilflächen zu einem Pixel nur drei Additionen
notwendig, anstatt wie vorher fünf Additionen und zwei Multiplikationen.

3.3. Rasterisierung

3.3.1. Optimierung des vorhandenen Algorithmus
3.3.1.1. Frühzeitiges Clipping

Ein frühes Clipping (also das Verwerfen nicht in den darzustellenden Bereich fallender
Teile) minimiert die Anzahl der Operationen mit Koordinaten, die am Ende verworfen
werden. Das umgebende Rechteck aus Abschnitt 2.2 wird daher nicht nur von den
maximalen bzw. minimalen x- und y-Werten des Dreicks limitiert, sondern auch von
der maximalen Breite und Höhe des Darstellungsbereiches. So muss nicht bei jedem
Pixel geprüft werden, ob seine Koordinaten außerhalb dieses Bereiches liegen, sondern
das Kriterium wird schon bei der Festlegung der Bounding-Box erfüllt, welche nur
pro Dreieck berechnet werden muss.
Zusätzlich wird vor der Interpolation der Farbe inklusive Beleuchtungsberechnung

im Tiefenpuffer geprüft, ob an diesem Pixelmittelpunkt ein Wert hinterlegt ist, der zu
einem Objekt gehört, das sich dort näher am Betrachter befindet. Da der Pixel ohnehin
im Falle einer positiven Prüfung seinen Farbwert behält, müssen keine Farb- und
Beleuchtungsberechnungen stattfinden. Ein Pixel, welcher nicht eingefärbt wird, weil
dort ein näheres Objekt Tiefenpuffer hinterlegt ist, hat also lediglich die Interpolation
der Tiefe zu Folge.
Allgemein ist es vorteilhaft, so viele Operationen wie möglich vor dem Durchlau-

fen der Schleife zu vollziehen. Dazu gehört die Berechnung des Flächeninhalts des
Dreiecks, durch die die baryzentrischen Koordinaten zur Skalierung auf den Bereich
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3.3. Rasterisierung

[0,1] geteilt werden müssen. Der Divisor muss nicht für jeden Pixel erneut berechnet
werden.

3.3.1.2. Abbruchbedingung innerhalb jeder Zeile

Der Algorithmus mit begrenzendem Viereck aus Abschnitt 2.2 arbeitet jede Zeile von
links nach rechts ab und färbt sie entsprechend ein. Innerhalb jeder Zeile ist bekannt,
ob in dieser schon ein Pixel eingefärbt wurde, oder nicht. Falls ja, ist der aktuelle Ort
des Rasterisierungsvorgangs entweder im Dreieck oder rechts davon, falls nicht, ist
er links davon. Ist ersteres der Fall und der Algorithmus befindet sich aktuell nicht
auf einem einzufärbenden Pixel, kann mit der nächsten Zeile fortgefahren werden, da
ohnehin kein einzufärbender Pixel mehr in dieser Zeile existieren kann. Dadurch wird
das Rechteck rechtsseitig ausgefranst. In der folgenden Abbildung sind die eingefärb-
ten Pixel mit einem grauen Kreuz versehen. Die mit einem roten Kreuz markierten
Pixel sind jene, in denen mit der nächsten Zeile fortgefahren werden kann.

+ +
+ + +
+ + + + +
+ + + + + + +
+ + + + + + + +
+ + + + + + +
+ + + +
+ +

•
A

•B

•C

Abbildung 3.2.: Der zeilenweise frühere Abbruch bei der Rasterisierung

Mit Hilfe dieser Optimierung wird im Durchschnitt bei jedem Dreieck ungefähr die
Hälfte der fälschlich geprüften Pixel gespart, in diesem Fall sogar mehr. Insgesamt
werden für halb so viele Pixel, wie sich im Dreieck befinden, die baryzentrischen
Koordinaten berechnet nur um festzustellen, dass sie sich nicht im Dreieck befinden.

3.3.1.3. Rasterisierung von links und rechts

Der Algorithmus arbeitet in vertikaler Richtung von unten nach oben und in horizon-
taler von links nach rechts. In jeder Zeile wird die Abbruchbedingung geprüft, die im
vorherigen Abschnitt erläutert wurde, und kann damit für eine Ersparnis sorgen. Im
Worst-Case müssen aber dennoch die baryzentrischen Koordinaten für alle Pixelmit-
telpunkte des umgebenden Rechtecks berechnet werden, wodurch weitere Rechenzeit
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3. Optimierung

verbraucht wird. Einen solchen Worst-Case bildet jedes Dreieck, das eine Kante hat,
die den rechten Rand des Rechtecks wie beispielsweise in Abbildung 3.3 zeigt, gänzlich
abdeckt.

+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +

•
A
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•
C

Abbildung 3.3.: Beispielhafter Worst-Case für die Rasterisierung bezüglich der Bedin-
gung aus 3.3.1.2

In diesem Fall können keine Pixel durch die Optimierung aus Abschnitt 3.3.1.2
eingespart werden, weil die zeilenweise Rasterisierung nach Betreten des Dreiecks
selbiges nicht mehr verlässt, und dementsprechend keine Pixel übersprungen werden
können.
Würde die Rasterisierung von rechts nach links verlaufen, könnten alle Pixel nach

dem ersten fälschlich geprüften pro Zeile eingespart werden, also eine hohe Ersparnis
erzielt werden und der Worst-Case würde zum Best-Case umgewandelt werden, da
eine höhere Ersparnis nicht möglich ist. Die Funktionsweise ist dabei analog zu der,
wenn von links nach rechts rasterisiert wird. Das Rechteck kann linksseitig ausgefranst
werden, weil sich nach dem Verlassen des Dreiecks keine Pixel mit ihren Mittelpunkten
innerhalb des Dreiecks befinden können.
Nun fehlt ein Kriterium zur Entscheidung, ob das Dreieck von links nach rechts oder

umgekehrt rasterisiert werden soll. Es bietet sich an, die x-Koordinate des Schwer-
punktes des Dreiecks zu bestimmen. Je nach dem an welcher vertikalen Kante des
Rechtecks bzw. wo im Intervall [xmin, xmax] sich der Wert befindet, wird von die-
ser Seite beginnend rasterisiert, da erwartet wird, dass sich dort der Großteil aller
zum Dreieck gehörigen Pixel befindet. In Abbildung 3.3 hätte die x-Koordinate des
Schwerpunktes S bei einem Rechteck der Breite Eins den Wert 2

3 , welcher näher an
der rechten Kante xmax = 1 liegt. Somit wird das Dreieck beginnend von rechts nach
links rasterisiert.
Durch diese Methode kann erwartet werden, dass nur noch 25% aller Pixel, die

innerhalb des Rechtecks negativ auf Zugehörigkeit des Dreiecks getestet würden über-
haupt noch geprüft werden.
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3.3. Rasterisierung

3.3.2. Window Search Rasterisierung
3.3.2.1. Kritik an der Rasterisierung mit umgebenden Rechteck

Der Ansatz der Rasterisierung aus Abschnitt 2.2 ist zwar simpel und garantiert
die vollständige Einbeziehung aller Pixel innerhalb des Dreiecks, jedoch involviert
er auch die Abtastung von Pixelmittelpunkten, welche nicht zum Dreieck gehören
und dementsprechend nicht gezeichnet werden. Für solche müssen die baryzentri-
schen Koordinaten berechnet werden, um in Folge dessen zu prüfen, ob sie das gleiche
Vorzeichen haben. Nur in diesem Fall liegen sie wirklich innerhalb des Dreiecks und
es kommt zur Einfärbung des Pixels. In der folgenden Abbildung 3.4 sind die Pixel-
mittelpunkte, die abgetastet werden, ohne sie einzufärben, mit einem roten Kreuz
gekennzeichnet. Besonders unter diesen leidet die Performance unnötig, da häufig
viele Dreiecke gezeichnet werden müssen und die Vielzahl an negativen Prüfungen
Zeit in Anspruch nimmt.

•
A

•B

•
C
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Abbildung 3.4.: Abtastpunkte der Rasterisierung mit umgebenden Viereck

Insgesamt werden 28 Pixel geprüft, sodass von allen die baryzentrischen Koordi-
naten berechnet werden müssen. Besonders auffällig ist die obere Reihe, die über die
ganze Breite geprüft wird, da der Algorithmus innerhalb dieser nie einen Pixemittel-
punkt im Dreiecks findet und dadurch nicht frühzeitig abbrechen kann, weil ihm nie
bekannt ist, dass er die Fläche des Dreiecks schon überschritten hat. Ungefähr 50% al-
ler Überprüfungen fallen negativ aus und resultieren nicht in einem Einfärbevorgang.
Wünschenswert wäre ein Algorithmus, der keine negativen Prüfungen vorweisen kann,
sodass nicht nur die inkrementelle Berechnung baryzentrischer Koordinaten, sondern
allgemein im Quelltext die gesamte Überprüfung auf das gleiche Vorzeichen jener Ko-
ordinaten, die in der bisherigen Variante für jeden Pixel anfällt, eingespart werden
kann. Durch die Kanten des Dreiecks kann jedoch mathematisch bestimmt werden,
welche Pixel innerhalb und außerhalb liegen.
Weiterhin spart die Optimierung aus Abschnitt 3.3.1.2 insgesamt nur die Überprü-

fung von zwei Pixeln im Vergleich zum üblichen umgebenden Viereck ein. Für kleine
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3. Optimierung

Dreiecke, wie sie bei fein detaillierten, dreidimensionalen Strukturen üblich sind, ist
die Einsparung durch die Optimierung allgemein nur gering. Grund dafür ist, dass
pro Zeile auch immer hinter dem Dreieck ein Pixel geprüft wird, der nicht im Drei-
eck liegt, um zu registrieren, dass die Rasterisierung dieser Zeile das Dreieck wieder
verlassen hat. Die Optimierung merkt nicht, dass sie sich am letzten Pixel innerhalb
des Dreiecks befindet, sondern erst, wenn sie sich am ersten Pixel außerhalb befindet.
Dadurch endet der Algorithmus beim Durchlaufen einer Zeile häufig bei dem Pixel,
der ohnehin auch in der Bounding Box der letzte Pixel gewesen wäre, wie es in Zeile
drei und vier der Fall ist. Pro Zeile können also durch frühzeitiges Verlassen häufig gar
keine oder wenige Pixel eingespart werden. Wüsste der Algorithmus, dass er sich am
letzten Pixel innerhalb des Dreiecks befindet und nun die Zeile wechseln kann nicht
erst dann, wenn er bereits am ersten außerhalb ist, wäre die dadurch erzielte Ein-
sparung drei Mal so groß für das Dreieck in der obigen Abbildung. Abgesehen davon
werden alle Pixel außerhalb des Dreiecks auf der Seite des Startes des Zeilendurch-
laufes negativ geprüft und dies nimmt Rechenzeit in Anspruch. Worst-Case bezüglich
dieser Optimierung ist ein symmetrisches Dreieck, da dann die Einsparung von links
und rechts gleich ist und minimal wird.
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Abbildung 3.5.: Worst-Case für die Optimierung des Zeilendurchlaufes für beide Rich-
tungen

Die Entscheidung, ob von links oder rechts rasterisiert werden soll, brachte für di-
verse Testbeispiele keinen Performancegewinn, sondern tendierte eher zum Verlust.
Pro Dreieck ist die Berechnung der x-Koordinate des Schwerpunktes, bestehend aus
der Mittelung der x-Koordinaten aller Eckpunkte, und die Abfrage der Differenz zu
den beiden äußeren x-Werten nötig. Die damit verbundene Einsparung ist aber aus
den oben genannten Gründen nur gering, vor allem, weil die Dreiecke sehr klein sind.
Häufig ist sogar die Einsparung bei einer Rasterisierung der Zeilen von links oder
rechts identisch oder weicht nur minimal ab, sodass die Berechnung unnötigen Zu-
satzaufwand darstellt, wodurch der Zusatzaufwand zur Ermittlung der Richtung des
Durchlaufs mehr Zeit in Anspruch nimmt, als eingespart wird.
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3.3. Rasterisierung

3.3.2.2. Ziel und Funktionsweise der „Window Search Rasterisierung“

Die Rasterisierung soll nun durch eine performantere ersetzt werden, deren grundle-
gende Idee aus [Hen+11] stammt. In diesem wird sie als „Window Search Bounding
Box“ aufgeführt. Wie im vorausgegangenen Abschnitt beschrieben, sollen ausschließ-
lich die Pixel innerhalb eines Dreiecks abgefragt werden. In Abbildung 3.5 entfallen
also beispielsweise alle roten Kreuze.

Das Dreieck wird in dieser Implementierung, ähnlich wie bei der Implementierung
mit dem Bresenham-Algorithmus aus [Rit19], von unten nach oben zeilenweise rasteri-
siert. Die Aufteilung des Dreiecks in zwei Hälften inklusive der Definition eines vierten
Eckpunktes auf Höhe des mittleren Eckpunktes auf dessen gegenüberliegender Kante
entfällt in dieser Implementierung, da es unnötigen Aufwand darstellt. Dies bildet
sowohl einen Speicher als auch einen Geschwindigkeitsvorteil. Es soll eine Schleife
jede Reihe von Pixeln angefangen von der Höhe des tiefsten Eckpunktes endend bei
der Höhe des höchsten durchlaufen. In jeder Iteration werden für die aktuelle, ganz-
zahlige Pixelreihe die x-Koordinaten für die linke und die rechte Kante ermittelt,
zwischen denen sich alle einzufärbenden Pixel befinden müssen. Anschließend iteriert
eine Schleife angefangen vom kleineren endend beim größeren x-Wert auf dieser Höhe,
um alle in dieser Zeile liegenden und zum Dreieck gehörigen Pixel einzufärben. Dabei
werden die baryzentrischen Koordinaten für den Pixel ganz links über die Teilflä-
cheninhalte ermittelt [Rit19], die restlichen Koordinaten in dieser Zeile ergeben sich
inkrementell. Jede Zeile wird in diesem Algorithmus auf ihre Schnittpunkte mit dem
zu rasterisierenden Dreieck untersucht.

Zur Realisierung müssen die drei Eckpunkte v1, v2 und v3 zunächst der y-Koordinate
nach aufsteigend sortiert werden, aber bleiben zusätzlich in der ursprünglichen Rei-
henfolge hinterlegt. Beim Backface Culling werden nämlich die dem Beobachter nicht
zugewandten Seiten nicht gezeichnet; alle Koordinaten haben in dem Fall ein nega-
tives Vorzeichen, was nur der Fall ist, wenn die Eckpunkte der Berechnung in der
gegebenen Reihenfolge übergeben werden. Außerdem sollen gegen den Uhrzeigesinn
definierte Dreiecke nicht gezeichnet werden, daher ist die ursprüngliche Reihenfolge
wichtig.

Sind nun die Eckpunkte bezüglich ihrer y-Koordinate aufsteigend sortiert, ergibt
sich die untere Grenze der Schleife über die Zeilen durch ymin = ⌈v1y⌉ und die obere
durch ymax = ⌊v3y⌋. Auf den Höhen des unteren bzw. oberen Eckpunktes kann nur in
der Reihe der Pixel darüber bzw. darunter ein Pixel existieren, der zu dem Dreieck
gehört. Nun muss im Wesentlichen für jede ganzzahlige Höhe yi ∈ {ymin, ..., ymax}

die Limitierung links und rechts auf dieser Höhe als Intervall xmin(yi) und xmax(yi)

ermittelt werden, um für jede Zeile die einzufärbenden Pixel innerhalb dieses Intervalls
zu ermitteln. Um den Algorithmus zu veranschaulichen, wird er anhand des Beispiels
aus Abbildung 3.5 teilweise vorgeführt.
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Abbildung 3.6.: Abtastpunkte der Window Search Rasterisierung

Auf den ersten Blick ist ersichtlich, dass nur die tatsächlich zum Dreieck gehören-
den Pixel abgetastet werden, was der gewünschten Anforderung entspricht. Dadurch
entsteht häufig eine enorme Einsparung, die größer ist, als der zusätzliche Overhead
der im Zuge der Berechnung der Schnittpunkte der Kanten mit den Höhen fällig wird.
A hat in Abbildung 3.6 die Koordinaten (6,5∣0,5), B(3,5∣6,5) und C(1,5∣2,1). Zur

Ermittlung der begrenzenden x-Werte werden die beiden Kanten, die aus A heraus-
gehen, als lineare Funktionen interpretiert. Eine verläuft bis zum obersten Eckpunkt
B, die andere bis zum mittleren Eckpunkt C. Das Dreieck zeigt nach links, da C

links von der Kante zwischen A und B liegt. Demnach bildet die Kante Ð→AC die linke
Begrenzung für die x-Werte und die Kante Ð→AB die rechte. Bei einem nach rechts
zeigenden Dreieck gilt umgekehrtes und in der folgenden Erklärung müssen xmax und
xmin getauscht werden.
Die unterste Linie, die durchlaufen wird, besitzt die Höhe Eins. In der Schleife über

die verschiedenen Höhen kann nun anhand der Information, ob sich die aktuelle Höhe
unter oder über der y-Koordinate des mittleren Pixels befindet, festgelegt werden, ob
für die linke Begrenzung die als Gerade interpretierte Kante Ð→AC oder Ð→CB verwendet
werden muss. Die Steigung von Ð→AC bezüglich y ergibt sich durch mac =

Ax−Cx

Ay−Cy
, die

von Ð→AB durch mab =
Ax−Bx

Ay−By
.

Für die linke begrenzende Kante unterhalb der Höhe des mittleren Eckpunktes C
gilt nun allgemein: xmin(yi) = ⌈Ax +mac ⋅ (yi − Ay)⌉, da sie als lineare Funktion mit
Ax als y-Achsenabschnitt interpretiert wird und von dort an ein Schritt der Länge
yi − Ay gemacht wird, um die aktuelle Höhe zu erreichen. Die obere Gaußklammer
kann hier verwendet werden, da dies der erste in Frage kommende x-Wert ist, der zu
dem Dreieck gehört. Für den Fall yi = 1 aus der Abbildung hat xmin den Wert 5 und
entspricht dem ersten Pixel von links auf der Höhe 1, der eingefärbt werden muss. Die
Formel für xmax(yi) ergibt sich analog durch ersetzen von mac durch mab und dem
Tausch der oberen mit der unteren Gaußklammer. So gelangt der Algorithmus zu dem
Ergebnis xmax = 6, welcher den letzten zum Dreieck gehörenden Pixel auf der Höhe
1 darstellt. Nach dem Einfärben aller Pixel zwischen xmin und xmax (inklusive inkre-
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menteller Berechnung baryzentrischer Koordinaten und der daraus folgenden Farb-
und Beleuchtungsberechnung) auf der Höhe wird mit der nächsten Zeile fortgefahren.
In dieser arbeitet der Algorithmus analog, da die Höhe yi = 2 < Cy ist, weswegen die
Kante Ð→AC die linke Limitierung bildet.
In der nächsten Zeile ändert sich lediglich die Vorschrift zur Bestimmung von xmin,

weil die aktuelle Zeile der Rasterisierung dort oberhalb des mittleren Eckpunktes liegt.
Deswegen wechselt mac zu mcb (Steigung der Kante Ð→CB) und A nun zu C, da der
Ursprung der Gerade im Punkt C statt wie vorher A definiert wird. Die Ermittlung
der linken Grenzen läuft nun analog mit der Formel für xmin(yi) = ⌈Cx+mcb ⋅(yi−Cy)⌉.
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4. Parallelisierung
Die Laufzeit des Software-Renderers soll möglichst gering sein. Insbesondere für Ani-
mationen ist sie relevant, weil jene mit einer möglichst hohen Bildrate dargestellt
werden müssen, um eine auf den Benutzer flüssig wirkende Bewegung zu erschaf-
fen. Eine Laufzeit wie in der Variante mit OpenGL und Hardwarebeschleunigung ist
nahezu unmöglich, da die Hardware einer Grafikkarte auf Visualisierungsprobleme
spezifiziert ist, während die CPU allgemeiner für diverse Anwendungsgebiete der Da-
tenverarbeitung gedacht ist. Dabei liegt der Vorteil der GPU-Hardware insbesondere
in der Vielzahl von Kernen, die Transformationen und Visualisierungsoperationen,
wie beispielsweise die Rasterisierung von Dreiecken, in hohem Maße parallel abferti-
gen können.
Nichtsdestotrotz hat die Mehrheit moderner CPUs mehrere Kerne, sodass die Rech-

nungen blockweise parallel vollzogen werden können. Offenbar muss die Parallelisie-
rung schematisch anders implementiert werden, als bei der hardwarebeschleunigten
Variante, da sie dort darauf ausgelegt ist, auf einem System mit sehr vielen Kernen
zu arbeiten. Die Skalierung dieser Art der Parallelisierung auf CPUs ist im Vergleich
zu GPUs suboptimal. Eine Reduzierung der Laufzeit soll daher durch andere Mecha-
nismen und Konzepte paralleler Programmierung realisiert werden, die im folgenden
erläutert und verglichen werden.
Wie in Abschnitt 2.3 beschrieben, werden pro Bild 0 bis n Dreiecksgitter gezeich-

net. Da die Anzahl an Dreiecksgittern theoretisch beliebig variieren kann, bietet sich
eine Parallelisierung dieser nicht an, weil die Anzahl verfügbarer Kerne konstant ist,
die Anzahl an Dreiecksgittern jedoch häufig geringer ist als die Anzahl der Kerne.
So werden im folgenden zwei mögliche Varianten für Aufteilungen vorgestellt und
diskutiert.

4.1. Paralleles Zeichnen von Dreiecksgitterteilen
Die Grundidee der ersten Variante ist Anzahl der Dreiecke jedes Dreiecksgitters in
gleich große Teile zu unterteilen und den Threads jeweils einen solchen Teil zuzuwei-
sen, der von ihm abgearbeitet werden soll. Somit bildet die Variante eine Aufteilung
hinsichtlich des darzustellenden Inhaltes.
Die Koordinaten der Eckpunkte eines Dreiecksgitters sind in einem Feld Eckpunkte

hinterlegt, jeder Eintrag enthält einen Eckpunkt mit dessen vier Koordinaten, so-
wie dessen Farbe und Normale [Rit19]. Für ein Dreiecksgitter kann ein sogenannter
Indexpuffer der Länge li hinterlegt sein, welcher aus einem Feld mit Indizes besteht,
deren Elemente in Blöcke der Größe drei unterteilt werden können und als solche
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4.1. Paralleles Zeichnen von Dreiecksgitterteilen

zusammen ein Dreieck durch Referenzierung des Feldes der Eckpunkte bilden.

Eckpunkte V0 V1 V2 V3 V4 V5 V6 V7 V8

Indexpuffer 0 1 2 3 2 1 7 5 8

⇒ Dreiecke △V0V1V2, △V3V2V1, △V7V5V8

Abbildung 4.1.: Visualisierung eines Indexpuffers

Ist kein Indexpuffer definiert, werden die Eckpunkte in ihrer Reihenfolge durchlau-
fen. Dabei sind jeweils drei Einträge des Feldes Eckpunkte, das die Länge le besitzt,
zusammen als ein Dreieck zu interpretieren. Abhängig davon, ob ein Indexpuffer exis-
tiert, sind demnach wenn er definiert ist Ad = li

3 und sonst Ad = le
3 Dreiecke zur

Darstellung eines Dreiecksgitters von Nöten. Die Anzahl der Dreiecke eines Dreiecks-
gitters Ad kann gleichmäßig auf die Threads aufgeteilt werden, indem sie durch die
Anzahl der Threads nt geteilt werden. Jeder Thread übernimmt dann seinen Teil des
Dreiecksgitters. Sie werden also nacheinander, aber jeweils in sich parallel gezeichnet.

4.1.1. Mutex-Lock des kritischen Bereiches
Während der parallelen Abarbeitung der Arbeitspakete, die aus einer Teilmenge al-
ler Dreiecke eines Dreiecksgitters bestehen, greifen die Threads alle auf dieselben
Farb- und Tiefenpuffer zu, falls ohne wesentliche Änderung die Parallelisierung in das
vorhandene Programm eingefügt wird. Dies ist sowohl beim Tiefen- als auch beim
Farbpuffer der Fall. Über die Positionierung der Dreiecke im Zusammenhang mit ih-
rer Threadzugehörigkeit ist nichts bekannt, sie können sich an beliebigen Stellen über
die gesamten Farbpuffer verteilt befinden. Besonders relevant ist dabei der Fakt, dass
mehrere Threads unter Umständen auf den exakt selben Speicherbereich zugreifen,
falls zwei der Threads jeweils ein Dreieck rasterisieren, welches zur Einfärbung dessel-
ben Pixels führt. Die Speicherbereiche der Farbpuffer und des Tiefenpuffers müssen
also beim Eintritt eines Threads für alle anderen gesperrt werden, sonst könnte es zu
einer Race Conditon kommen.
Beispielsweise fragt ein Thread T1 den Tiefenpuffer an einer Stelle (x, y) ab und

realisiert, dass das Dreieck, welches gerade durch ihn rasterisiert wird, näher am Be-
obachter ist (z1 = 0,5), als das bisher an dieser Stelle hinterlegte (zx,y = 0,6). Somit
muss ein Einfärbevorgang stattfinden. Bevor der Pixel eingefärbt wird, setzt ein an-
derer Thread T2 ein, der ebenfalls an der Stelle (x, y) eine Einfärbung vornehmen
will. Dieses Dreieck besitzt dort den Tiefenwert z2 = 0,4 und ist somit das zum Be-
trachter nächstgelegene, deswegen wird es auch eingefärbt. Nun setzt die Abarbeitung
des Threads T1 erneut ein; dieser hat allerdings bereits die Abfrage des Tiefenpuffers
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überwunden und überschreibt aus diesem Grund den von Thread T2 hinterlegten
Farbwert, welcher eigentlich der für diesen Pixel korrekte gewesen wäre. In diesem
und ähnlichen Fällen kann die Korrektheit der Darstellung nicht mehr gewährleistet
werden.
Die erste intuitive Idee ist es, den Bereich der Abfrage des Tiefenpuffers und den

Einfärbevorgang durch ein Mutex-Lock zu schützen, sodass nur ein Thread gleichzei-
tig dort eintreten darf. Jedoch ist in diesem Fall nicht nur der Overhead durch das
allzuhäufige Sperren und Entsperren des Mutex-Locks sehr hoch, sondern die Paral-
lelisierung an sich durch das ständige Warten gestört, sodass es in der tatsächlichen
Ausführung der sequentiellen Abarbeitung nahe kommt. In diversen Beispielen war
die Laufzeit dieser Implementierung deutlich höher als die der Ursprünglichen ohne
jegliche Parallelität.

4.1.2. Mehrere Farb- und Tiefenpuffer mit anschließendem
Mischen

(a) Dreiecksgitterteile im Farbpuffer
des ersten Threads

(b) Dreiecksgitterteile im Farbpuffer
des zweiten Threads

(c) Dreiecksgitterteile im Farbpuffer
des dritten Threads

(d) Dreiecksgitterteile im Farbpuffer
des vierten Threads

Abbildung 4.2.: Darstellung der Dreiecksgitterteile in den Farbpuffern der Threads
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Besonders das Warten auf das Mutex-Lock bremst die Ausführungsgeschwindigkeit
enorm. Praktisch wäre es also, wenn jeder Thread ohne Mutex seinen Teilblock an
Dreiecken (d.h. Di =

Ad

nt
) zeichnen kann und dabei keine Gefahr von Race Conditions

besteht. Aus diesem Grund werden so viele Farbpuffer und Tiefenpuffer angelegt,
wie Threads vorhanden sind. Somit hat jeder Thread seinen eigenen Speicherbereich,
in den sein Teil eines Gitters gezeichnet werden kann. Sind mehrere Dreiecksgitter
pro Bild vorhanden, zeichnet jeder Thread seinen Anteil an jedem dieser in den zu
ihm gehörigen Farbpuffer und hinterlegt dementsprechend die Tiefenwerte in seinem
Tiefenpuffer. Ergebnis dieses Vorgangs sind mehrere Farb- und Tiefenpuffer, deren
Anzahl jeweils der Anzahl an verwendeten Threads entspricht. In diesen Farbpuffern
ist pro Dreiecksgitter ein Anteil hinterlegt.
Diese Farbpuffer müssen nun mit Hilfe der vorhandenen Tiefenpuffer zusammenge-

fügt werden, sodass sie im Verbund das ursprünglich gewünschte Bild ergeben. Dazu
wird über jeden Pixel des Farbpuffers iteriert und das Minimum über alle an die-
ser Stelle in den verschiedenen Tiefenpuffern hinterlegten Tiefenwerte gesucht. Der
zu dem Tiefenwert im entsprechenden Farbpuffer hinterlegte Wert bildet dann den
Farbwert des Ergebnisses an dieser Stelle. Bildlich gesehen werden die Farbpuffer ge-
mischt, indem an jeder Stelle die Tiefenwerte aufsteigend sortiert werden und die
Farbpuffer dort analog angeordnet werden. Das Endergebnis besteht dann aus dem
Zusammenschluss aller Pixel, die sich am Ende ganz vorne befinden.
Diese Operation kann auf simple Art und Weise parallelisiert werden. Das Bild wird

in so viele Streifen unterteilt wie Threads verfügbar sind. Jeder Thread kümmert sich
dann um einen Teilbereich, sodass niemals von zwei Threads auf dieselbe Adresse
zugegriffen werden kann und demzufolge auch keine Mutex-Locks oder ähnliche Me-
chanismen von Nöten sind.
Diese Variante stellte sich als effizienter als die sequentielle Abarbeitung heraus,

obwohl zusätzlich die Operation des Zusammenfügens anfällt. Der Speicherbedarf ist
enorm erhöht, da der von den Farb- und Tiefenpuffern benötigte Speicherplatz sich
um den Faktor nt vervielfacht.

4.1.3. Teile von Dreiecksgittern in Queues
4.1.3.1. Motivation

Die Implementierung auf die beschriebene Art und Weise impliziert diverse Nachteile.
Zum Beispiel müssen für jedes Dreiecksgitter die Threads neu erstellt und ihnen die
Aufgaben zugewiesen werden. Die Erstellung eines Threads ist zeitintensiv. Beson-
ders, wenn nur kleine Dreiecksgitter vorhanden sind lohnt sich die mehrfache Inita-
lisierung der Threads und die Aufteilung der Aufgaben kaum, da der Overhead zur
Erstellung zu groß ist. Allgemein führen viele Dreiecksgitter zur häufigen wiederhol-
ten Erstellung von Threads, welche aber prinzipiell immer nur die gleiche Aufgabe
verrichten, die im Zeichnen eines Teils des Dreiecksgitters besteht. Der Aufruf der
Methode pthread_join() zum Warten auf Fertigstellung der Aufgaben der Threads
wäre sinnvoller vor Beendigung des gesamten Programmes und nicht nach jedem Drei-
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ecksgitter, da erst ganz am Ende des Programmdurchlaufs den Threads mit Sicherheit
keine neue Aufgaben mehr zugeteilt werden müssen. Praktischer und zeitsparender
wäre also die einmalige Erstellung von Threads beim Start des Programmes, die dann
immer wieder neue Arbeitspakete verschiedener Dreiecksgitter und Bilder zum Zeich-
nen übergeben bekommen und sich um die Darstellung jener in dem dazugehörigen
Farbpuffer kümmern. Sie sollen immer zur Verfügung stehen und nach der Been-
digung der Abarbeitung eines zu einem Dreiecksgitter gehörigen Teilstückes wieder
bereit sein, den nächsten Job entgegen nehmen zu können.
Weiterhin muss die Abarbeitung nach dem Zeichnen jedes Dreiecksgitters bezie-

hungsweise dem Zeichnen von dessen Teilen auf die Fertigstellung von dessen lang-
samsten Teilstückes warten, bevor das Zeichnen des nächsten oder, im Falle des letz-
ten Dreiecksgitters, der Mischvorgang beginnen kann. Dieser Nachteil ist jedoch eher
weniger relevant, da sich die Größe der Arbeitspakete auf Grund der gleichmäßigen
Aufteilung pro Dreiecksgitter maximal um ein Dreieck unterscheiden.
Außerdem werden in der Implementierung nach dem beschriebenen Schema neue

Threads erstellt und gestartet, um das Mischen der Farbpuffer zu realisieren. Hier
treten die gleichen Nachteile auf, wie eingangs in diesem Abschnitt beschrieben. Ziel
ist es, das Zeichnen der Dreiecksgitterteile und deren Mischvorgang für alle Bilder in
denselben Threads zu erledigen, die lediglich ein Mal pro Darstellungsvorgang erzeugt
werden und vor Terminierung des GR3 wieder gelöscht werden.

4.1.3.2. Implementierung

Damit die Threads nur ein Mal pro Szene erstellt werden müssen, wird eine Queue
implementiert, die alle Jobs beinhaltet die die einmalig initialisierten Threads dann
bei Verfügbarkeit entgegennehmen. Dieses Prinzip ähnelt dem Producer-Consumer-
Problem. Die Grundidee ist dabei die folgende: Pro Thread wird eine Queue erstellt,
in der jedes Element die Informationen über den zu diesem Thread gehörigen Teil
eines Dreiecksgitters enthält.
In einer Szene werden jeder der Queues also so viele Elemente hinzugefügt, wie

Dreiecksgitter vorhanden sind, nur, dass jeder Eintrag nicht das gesamte Dreiecks-
gitter beinhaltet, sondern lediglich einen Teil. Die Aufteilung jedes Dreiecksgitters in
seine Teile übernimmt der Main-Thread während der Iteration, der sogleich die In-
formationen in die Queue einfügt und damit die Verarbeitung anstößt. Jeder Thread
entnimmt dann seiner Queue die Elemente und zeichnet die daraus resultierenden
Dreiecksgitterteile in seinen Farbpuffer. Hat jeder Thread die Abarbeitung aller sei-
ner Jobs erledigt, beginnt der Mischvorgang, der ebenfalls parallel stattfindet. Jeder
Thread bekommt bei seiner Erstellung übergeben, welchen Teil des Farbpuffers er
durchlaufen beziehungsweise mit den anderen vermischen soll. Ist auch der Mischvor-
gang beendet wird das Bild dargestellt. Die Threads sind dann wieder in der Lage,
die Teile der Dreiecksgitter eines möglichen neuen Bildes entgegenzunehmen. Eine
Übersicht des gesamten Ablaufs ist in der Abbildung 4.3 visualisiert.
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Abbildung 4.3.: Grober Ablauf der ersten Variante des parallelen Renderns für nt = 4
Threads
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Beim Start des Programmes werden die Threads mit pthread_create() initia-
lisiert. Dabei wird ihnen ein horizontaler Streifen, der einen Anteil von 1

nt
an der

Gesamthöhe hat, in Form von Starthöhe und Endhöhe zugeordnet. Dieser dient später
als Basis des parallelen Mischvorganges. Ebenso wird für jeden Thread eine Queue er-
stellt, in die die Dreiecksgitterteile eingereiht werden. Der Methode pthread_create()
wird als Parameter im Wesentlichen die folgende Methode übergeben, die die Jobs
entgegennimmt.

1 whi le ( t e i l d r e i e c k s g i t t e r _ i n f o = queue_dequeue ( queue ) ) {
2 z e i c h n e_ t e i l d r e i e c k s g i t t e r ( t e i l d r e i e c k s g i t t e r _ i n f o ) ;
3 i f ( t e i l d r e i e c k s g i t t e r _ i n f o . l e t z t e s_ g i t t e r ) {
4 /∗ Letzte T e i l d r e i e c k s g i t t e r d i e s e s Threads ? ∗/
5 th r e ad s_ f e r t i g += 1 ;
6 i f ( t h r e ad s_ f e r t i g == ANZAHL_THREADS) {
7 /∗ Al l e Threads f e r t i g mit Zeichnen ? ∗/
8 pthread_cond_broadcast(&warte_auf_mischen ) ;
9 } e l s e {

10 pthread_cond_wait(&warte_auf_mischen , &lock ) ;
11 }
12 mische_puffer ( thread . start_y , thread . end_y) ;
13 /∗ Mischen des B i l dau s chn i t t e s ∗/
14 th r e ad s_ f e r t i g += 1 ;
15 i f ( t h r e ad s_ f e r t i g == 2 ∗ ANZAHL_THREADS) {
16 /∗ Al l e Threads f e r t i g mit Mischen ∗/
17 pthread_cond_signal(&warte_nach_mischen ) ;
18 }
19 }
20 }

Abbildung 4.4.: Vereinfachte Abarbeitung für jeden Thread (zur Übersichtlichkeit
sind Mutex-Locks nicht aufgeführt)

Jeder Thread blockiert dabei in der ersten Zeile, falls die Queue keine Elemente ent-
hält. Es wird in der Methode queue_dequeue() auf ein Condition-Signal gewartet,
wenn die Queue leer ist. Während also nt Threads auf die Entgegennahme von Arbeit-
spaketen warten, füllt der Main-Thread den Farbpuffer mit Hintergrundfarbe. Danach
iteriert er über alle Dreiecksgitter und teilt pro Iterationsschritt das aktuelle in gleich
große Teile ein, damit sie den verschiedenen Queues hinzugefügt werden können. Für
jedes Dreiecksgitter werden dann einmal im Main-Thread die Transformationsmatri-
zen sowohl für die Koordinaten selbst, als auch für die Normalen initialisiert und
miteinander multipliziert, um diesen Aufwand nicht in jedem Thread durchführen
zu müssen. Dann wird einer von nt gleich großen Teilen des Indexpuffers oder der
gegebenen Eckpunkte in die jeweils zu einem Thread gehörige Queue eingereiht.
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1 i n t l e t z t e s_ g i t t e r ;
2 whi le ( d r e i e c k s g i t t e r ) {
3 i n t a n t e i l ;
4 l e t z t e s_ g i t t e r = d r e i e c k s g i t t e r −>next == NULL;
5 i f ( anzah l_ind izes != 0) {
6 /∗ Indexbu f f e r d e f i n i e r t ∗/
7 a n t e i l = anzah l_ind ize s /ANZAHL_THREADS;
8 } e l s e {
9 /∗ Kein Indexbu f f e r d e f i n i e r t ∗/

10 a n t e i l = anzahl_eckpunkte/ANZAHL_THREADS;
11 }
12 f o r ( thread_idx = 0 ; thread_idx < NUM_THREADS; thread_idx++){
13 queue_enqueue ( queues [ thread_idx ] , malloc_arg ( d r e i e c k s g i t t e r ,
14 matrizen , l e t z t e s_g i t t e r , thread_idx∗ an t e i l ,
15 ( thread_idx+1)∗ a n t e i l ) ) ;
16 }
17 d r e i e c k s g i t t e r = d r e i e c k s g i t t e r −>next ;
18 }
19 pthread_cond_wait(&warte_nach_mischen , &lock ) ;

Abbildung 4.5.: Vereinfachte Einreihung der Teilaufgaben in die einzelnen zu den
Thread gehörigen Queues

Übergeben wird das zu zeichnende Dreiecksgitter, die für die Transformation not-
wendigen Matrizen und der Start- und der Endindex im Indexpuffer bzw. Eckpunkt-
feld des zu zeichnenden Anteils. Der Wert letztes_gitter gibt Auskunft darüber,
ob es sich um das letzte Dreiecksgitter eines Bildes handelt. In diesem Fall kann
nämlich nach der Beendigung aller Jobs mit letztes_gitter = 1 der Prozess des Mi-
schens der Farbpuffer beginnen. Nach der Iteration über die Dreiecksgitter wartet der
Main-Thread mit der tatsächlichen Darstellung des Bildes auf ein Signal der ande-
ren Threads, die ihm mitteilen, wenn sie sowohl das Zeichnen als auch das Mischen
erledigt haben.
Beim Kommando queue_enqueue() wird ein Condition-Signal an den zu der Queue

gehörigen Thread gesendet, der danach aufwacht und die queue_dequeue() Funktion
fortsetzt. Damit beginnt die Abarbeitung aus Abbildung 4.4, die das Zeichnen die-
ses Dreiecksgitterteils beinhaltet. Ist ein Thread mit dem Zeichnen fertig, bevor der
nächste Job eingereiht wird, wartet er auf ein Condition Signal, das heißt auf das
nächste Einreihen eines Jobs in der Bedingung der while-Schleife.
Ist ein Job abgearbeitet, der zum letzten Dreiecksgitter eines Bildes gehört, wird

eine Zählvariable threads_fertig erhöht. Ein Thread, der einen Job aus der Queue
entnimmt und realisiert, dass dies der letzte zu dem Bild gehörige ist, kann war-
ten, falls die anderen Threads noch nicht fertig sind, also falls threads_fertig < nt.
Gleicht der Wert dieser Variable allerdings der Anzahl an vorhandenen Threads, ha-
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ben alle Threads ihre Dreiecksgitterteile gezeichnet und der Vorgang des Mischens
kann beginnen. Ein Flaschenhals ist hier unwahrscheinlich, da jeder Teil eines Drei-
ecksgitters gleich groß ist und damit jeder Thread einen gleich großen Anteil der
Arbeit erledigt. Der Thread, der als letztes mit seiner Abarbeitung fertig wird, signa-
lisiert dies allen anderen bereits fertigen und auf ihn wartenden Threads mit dem
Befehl pthread_cond_broadcast(). Dieser Befehl weckt alle mit eine spezifizierte
Condition-Variable wartenden Threads auf, was in dem Fall allen Threads bis auf
den Main-Thread entspricht. Jeder der Threads mischt dann seinen festgelegten ho-
rizontalen Streifen des Bildes und sucht für jeden darin enthaltenen Pixel den zum
Betrachter am nächsten befindlichen, um dessen Farbwert in dem am Ende dargestell-
ten Farbpuffer zu hinterlegen. Dabei kann es auf Grund der Disjunktheit der Streifen
nicht zu Race-Conditions kommen. Jeder Thread, der seinen Teil fertig gemischt hat,
erhöht die Variable threads_fertig erneut. Sind alle fertig mit dem Mischvorgang,
hat die Variable den Wert 2nt. In dem Fall erhält der Main-Thread, der nach der
Einreihung aller Jobs auf die Fertigstellung der anderen Threads gewartet hat, ein
Signal. Dieser weiß nun, dass das gesamte Bild gezeichnet ist und der parallele Teil
der Abarbeitung ist beendet. Somit kann das Bild entweder einer weiteren Verar-
beitung unterzogen werden (z.B. Kantenglättung) oder dargestellt beziehungsweise
exportiert werden.

4.2. Zeilenweise Verteilung der Arbeit auf die Threads

Der zweite Ansatz verfolgt die Idee, nicht den darzustellenden Inhalt, sondern den
darzustellenden Bereich gleichmäßig auf die Threads aufzuteilen. Dadurch müssen
nicht mehrere Farb- und Tiefenpuffer angelegt werden, da jeder Thread innerhalb der
Puffer seinen eigenen, disjunkten Bereich hat, auf den niemals ein anderer Thread le-
send oder schreibend zugreifen wird. Im Vergleich zur Implementierung aus Abschnitt
4.1.3.2 müssen daher nicht mehrfach große Speicherbereiche wie der Farb- und Tie-
fenpuffer allokiert werden. Dementsprechend entfällt auch der Schritt des Mischens,
da alle Threads auf denselben Puffern arbeiten und innerhalb dieser ausschließlich
auf die ihnen zugeteilten Bereiche zugreifen. Insgesamt setzt sich daraus dann das
vollständige Bild im Farbpuffer zusammen.
Unter der Prämisse, dass alle Threads einen möglichst gleichen Teil der Rasteri-

sierung übernehmen sollen, bietet es sich nicht an, die Puffer in nt gleich große hori-
zontale oder vertikale Streifen zu unterteilen, weil die Bildinformation häufig zusam-
menhängend in der Mitte der Szene konzentriert ist. Deswegen besteht beim Einteilen
in gleich große Streifen zusammenhängende die Gefahr, dass die Bildinformation un-
gleich auf die Threads verteilt wird und zum Beispiel die Threads, die sich um den
obersten und untersten Streifen kümmern deutlich weniger Rasterisierungsarbeit er-
ledigen, als die für das Zentrum verantwortlichen.
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+ + + +
+ + + +
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+ +

Abbildung 4.6.: Einteilung der Puffer auf die verschiedenen Threads

Sinnvoller hingegen ist es, jedem Thread ti den ti + nt-ten Streifen des Farb- und
Tiefenpuffers zuzuweisen. Der Thread ti kümmert sich also um alle Zeilen z aus dem
Farb und Tiefenpuffer, bei denen z ≡ ti (mod nt) gilt. Der erste Thread übernimmt
beispielsweise die Zeile 0, nt,2nt, ..., der zweite 1,1 + nt,1 + 2nt, .... Diese Aufteilung
erhöht die Wahrscheinlichkeit einer gleichmäßigen Aufteilung der zu rasterisierenden
Bildinformation, da ein Dreieck eines Gitters, dessen Höhe nt überschreitet, unab-
hängig von seiner Positionierung gleichmäßig auf die Threads aufgeteilt wird. In der
obigen Abbildung 4.6 hat jeder der nt = 4 Threads eine eigene Farbe und es ist einge-
zeichnet, für die Rasterisierung welcher Zeilen er verantwortlich ist. Eine schematische
Visualisierung des Gesamtablaufs ist in Abbildung 4.7 dargestellt. Jene Pixel, die ein-
gefärbt werden, sind mit einem Kreuz markiert.
Bei der Rasterisierung wird zunächst innerhalb des Main-Threads über die Gitter

und schließlich innerhalb jedes Threads über die Dreiecke iteriert, indem sie der Queue
entnommen werden. Liegt ein Dreieck vollständig in einem Bereich, das keine Zeile
beinhaltet, für die der aktuelle Thread verantwortlich ist, wird es übersprungen und
mit dem nächsten fortgefahren. Um zu ermitteln ob dies der Fall ist, sind jedoch
Berechnungen von Nöten, die bei der Rasterisierung ohnehin anfallen würden. Die
dadurch erzielte Einsparung ist dementsprechend überschaubar. Die Motivation für
die Queue ist ähnlich wie in Abschnitt 4.1.3.1.
Obwohl dieser Ansatz den Vorteil hat, weniger Speicherplatz beanspruchen zu müs-

sen, ist er in der Praxis deutlich langsamer, als die in Abschnitt 4.1 beschriebene
Alternative. Ursache dafür ist unter anderem, dass jeder Thread alle Dreiecke eines
Bildes durchlaufen muss, unabhängig davon, ob ein Dreieck eine für den Thread re-
levante Zeile enthält. Innerhalb jedes Threads ti wird deswegen geprüft, ob eine Zeile
z innerhalb des Dreiecks liegt, bei der z ≡ ti (mod nt). Ist diese Prüfung negativ, wie
es bei vielen kleinen Dreiecken häufig der Fall ist, war die gesamte Rechnung für den
Thread irrelevant und es wird mit dem nächsten Dreieck fortgefahren. Die beschrie-
bene Prüfung ist jedoch zeitintensiv und muss für ausnahmslos jedes Dreieck in jedem
Thread geschehen.
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Abbildung 4.7.: Grober Ablauf der zweiten Variante des parallelen Renderns für nt = 4
Threads
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4.3. Weitere Optimierungen

Andernfalls ist bei positiver Prüfung der Overhead zur Ermittlung der Schnittmen-
ge der durch den Thread zu rasterisierenden Zeilen und der zum Dreieck gehörigen
Zeilen höher als das einfache Durchlaufen aller Dreieckszeilen, besonders bei kleinen
Dreiecken, die häufig in präzisen Darstellungen auftreten.
Des Weiteren ist der Rasterisierungsalgorithmus darauf ausgelegt, durch die Initia-

lisierung der zur Rasterisierung benötigten Werte anschließend durch wenige Opera-
tionen ein zeilenweises Durchlaufen des Dreiecks von unten nach oben zu ermöglichen.
Durch das Überspringen von für den Thread nicht relevanten Zeilen wird neben an-
derem der Vorteil, der durch die Implementierung der inkrementellen Berechnung
baryzentrischer Koordinaten entsteht, nicht optimal ausgenutzt, da in jedem Thread
eine initiale Berechnung stattfinden muss. Ähnliches gilt für die Steigung der Drei-
eckskanten, die nur einmal pro Dreieck berechnet wird. Zusammengefasst bedeutet
dies, dass das Rasterisieren jeder nt-ten Zeile eines Dreiecks bei weitem nicht nur 1

nt

der Zeit benötigt.
In seiner Struktur ist diese Variante simpler und zudem benötigt sie weniger Spei-

cherplatz, aber auf Grund der beschriebenen Nachteile und ihres Einflusses auf die
Ausführungszeit wurde die Implementierung verworfen. Stattdessen wird die in Ab-
schnitt 4.1 beschrieben wurde übernommen, auf die sich im folgenden Abschnitt be-
zogen wird.

4.3. Weitere Optimierungen

4.3.1. Nutzen allokierter Teile des letzten Bildes
Allokationen sind relativ aufwändig. Jedes Bild setzt sich nach dem Zeichnen der Drei-
ecksgitterteile aus nt Farbpuffern und den dazugehörigen nt Tiefenpuffern zusammen.
Um nicht in jedem Bild die genannten Speicherbereiche allokieren zu müssen, wer-
den nach dem Zeichnen eines Bildes die Speicherbereiche nicht freigegeben, sondern
sind für alle weiteren Bilder verfügbar. Hat sich dann im nächsten Bild die Höhe und
Breite des Bildes nicht verändert, wie es bei Animationen zum Beispiel oft der Fall
ist, können die Farb- und Tiefenpuffer aus dem Bild davor erneut verwendet werden.
Andernfalls müssen sie reallokiert werden, was in der Praxis jedoch häufig nicht der
Fall ist. In der Implementierung werden dazu Variablen hinterlegt, die die Höhe und
die Breite des letzten Bildes speichern, um beim nächsten Bild die Gleichheit über-
prüfen zu können. Das Prinzip der Wiederverwendung über die Bilder hinweg findet
sich auch bei den Threads wieder, wie in Abschnitt 4.1.3.1 beschrieben.

4.3.2. Füllen der Farb- und Tiefenpuffer
Die Methode gr3_getpixmap_(pixmap) bekommt einen Farbpuffer (engl. Pixmap)
übergeben, in den letztendlich das fertige Bild eingefügt soll. Vom Software-Renderer
selbst allokiert werden müssen also nur die restlichen nt−1 Farb- und nt Tiefenpuffer.
Der übergebene Farbpuffer wird initial mit der Hintergrundfarbe des Bildes gefüllt,
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4. Parallelisierung

die vom Nutzer spezifiziert werden kann. Der dazugehörige Tiefenpuffer wird mit dem
Wert Eins zurückgesetzt, da tiefere Elemente nicht gezeichnet, sondern abgeschnitten
werden. Das in diesen beiden Fällen zum Füllen verwendete Durchlaufen der Farb-
puffer und des Tiefenpuffers ist zeitintensiv. Aus diesem Grund werden alle restlichen
Farbpuffer durch malloc() allokiert, anstatt auch die Hintergrundfarbe zugewiesen
zu bekommen. Alle Tiefenpuffer, bis auf den zum letztendlich dargestellen Farbpuf-
fer gehörigen, werden wegen der guten Performance mit einem memset() initialisiert.
Dieses setzt eine spezifizierte Anzahl von Bytes beginnend bei einer Startadresse auf
einen Wert, sodass später, bei der Interpretation von vier aufeinanderfolgenden Bytes
eine Fließkommazahl resultiert, die größer als Eins ist. Alle Pixel, die aufgrund eines
zu zeichnenden Teildreiecksgitters in den Farbpuffern eingefärbt werden, bekommen
dann ohnehin den korrekten Tiefenwert in Zuge der Rasterisierung zugewiesen.
Nach einem Bild muss nur der Farbpuffer, der am Ende dargestellt wird, noch ein-

mal mit der Hintergrundfarbe gefüllt und jeder Wert des dazugehörigen Tiefenpuffers
auf den Wert Eins gesetzt werden. Die anderen Tiefenpuffer werden dann wie oben
beschrieben durch die performante Operation memset() auf einen Tiefenwert größer
als Eins gesetzt. Der Inhalt aller Farbpuffer bis auf den ersten ist zu diesem Zeitpunkt
irrelevant, da die darin enthaltene Information in Kombination mit den Tiefenpuffern
ohnehin in einem Mischvorgang nie verwendet wird. Die Tiefenpuffer geben näm-
lich Aufschluss darüber, welche der Daten aus den dazugehörigen Farbpuffern sich
hinter dem Hintergrund aus dem ersten Farbpuffer befinden. Deswegen müssen die
Farbpuffer nicht zurückgesetzt werden, wodurch Zeit eingespart wird. Beim Rasteri-
sierungsvorgang werden Elemente, die tatsächlich vor dem Hintergrund sind, auch mit
einem passenden Tiefenwert in den anderen Farbpuffern hinterlegt, sodass dies beim
Mischen keine Komplikationen verursacht. Lediglich die initale Füllung ist nicht von
Bedeutung, da wegen der Tiefe ohnehin die korrekte, im Zielfarbpuffer befindliche,
Hintergrundfarbe präferiert wird. Wichtig sind also dann nur die von der Rasterisie-
rung veränderten Pixel, welche auch einen passenden Tiefenwert besitzen.

4.3.3. Arbeit mit und ohne Indexpuffer
Wie in Abschnitt 4.1 erwähnt, können die Dreiecke entweder über einen Indexpuffer
definiert sein, oder in die Eckpunkte in der Reihenfolge angegeben sein, in der sie die
Dreiecke bilden.
Im ersten Fall lohnt es sich, vor Beginn der Abarbeitung zunächst alle Eckpunkte

inklusive ihrer Normalenvektoren vom Main-Thread transformieren zu lassen, ohne
den Indexpuffer dabei zu berücksichtigen. Der Indexpuffer greift dann im weiteren
Verlauf des Programmes auf die bereits transformierten Eckpunkte zu. Zwar muss
dafür ein Feld mit Eckpunkten allokiert werden, jedoch erwies sich diese Variante
in Tests als effizienter. Alternativ könnten zwar die Eckpunkte eines Dreiecks immer
unmittelbar vor dessen Zeichenvorgang transformiert werden, allerdings würde in die-
sem Fall derselbe Eckpunkt mehrfach transformiert werden, wenn der Indexpuffer ihn
in mehreren Dreiecken referenziert.
Im Falle ohne Verwendung eines Indexpuffers können die Transformationen unmit-
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4.3. Weitere Optimierungen

telbar vor dem Zeichenvorgang des Dreiecks geschehen. Damit entfällt die zeitaufwän-
dige Allokation des Speichers und die Eckpunkte können in transformierter Form in
einem Feld auf dem Stack hinterlegt werden. Des Weiteren sind dadurch die Trans-
formationen ebenfalls parallelisiert. Hier ist das Programm ohnehin nicht in Kenntnis
darüber, ob der gleiche Eckpunkt mehrfach transformiert wird, oder nicht, da die
Informationen im ursprünglichen Feld der Eckpunkte redundant hinterlegt wären.
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5. Zusammenfassung und Ergebnisse

5.1. Zusammenfassung
Der Software-Renderer aus [Rit19] wurde in seiner Funktionalität erweitert, sodass
nun alle von GR3 erzeugten Dreiecksgitter gezeichnet werden können, was vorher nur
mit Hilfe einer OpenGL-Implementierung möglich war. Dadurch können alle Szenen
des GR3 automatisch auch gänzlich ohne Hardwarebeschleunigung dargestellt wer-
den, falls diese nicht verfügbar ist. Um den gesamten Funktionsumfang abzudecken
mussten SSAA zur Kantenglättung und zusätzliche Beleuchtungsberechnungen imple-
mentiert werden.
Zur Optimierung des Programmes wurde zunächst die Anzahl der benötigten Be-

rechnungen minimiert. Dazu gehört hauptsächlich die Implementierung der „Window
Search Rasterisierung“, ein alternativer, schnellerer Algorithmus zur Rasterisierung
von Dreiecken, der die ursprüngliche Implementierung der „Rasterisierung mit um-
gebenden Rechteck“ vollständig ersetzt. In dem neuen Algorithmus werden zudem
baryzentrische Koordinaten inkrementell berechnet und die Anzahl der benötigten
Allokier- und Kopieroperationen möglichst minimiert.
Weiterhin wurde die Implementierung parallelisiert. Dazu wurden zwei Methodiken

verglichen. In der ersten werden Teile von Dreiecksgittern jeweils von einem Thread
in seinen Farbpuffer gezeichnet und am Ende die Puffer aller Threads bereichsweise
parallel zusammengemischt. Die zweite Methodik teilt den Farb- und Tiefenpuffer in
Streifen mit einem Pixel Höhe auf, sodass jeder Thread die gleiche Anzahl solcher
gleichmäßig verteilten Streifen zugewiesen bekommt und nur diesen Teil der Pixmap
visualisieren müssen. Auf den Bereich greifen die anderen Threads niemals zu. Wegen
des Geschwindigkeitsvorteils setzte sich die erste Variante durch und wurde folglich
weiter untersucht und optimiert.

5.2. Ergebnisse
GR3 beinhaltet nun einen Software-Renderer, auf den automatisch zurückgegriffen
wird, wenn keine hardwarebeschleunigte OpenGL Implementierung vorliegt. Explizit
ausgewählt werden kann der Software-Renderer durch das Setzen der Umgebungsva-
riablen GR3_USE_SR. Dies funktioniert auch in Umgebungen, die Hardwarebeschleu-
nigung unterstützen. Die erzeugten Grafiken unterscheiden sich von jenen, die mit
OpenGL erzeugt wurden, nur minimal auf Grund von Ungenauigkeiten der Fließkom-
maarithmetik. Die Testbeispiele wurden alle, sofern nicht explizit anders erwähnt, auf
einem Ubuntu System mit 16 Kernen erzeugt. Die Zeiten in Zahlen befinden sich im
Anhang A.
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5.2. Ergebnisse

5.2.1. Test mit hoher geometrischer Komplexität

Der erste Test besteht aus der Visualisierung mehrerer Schädel. Jeder Schädel ist
ein Dreiecksgitter bestehend aus 76382 zu rasterisierenden Dreiecken. Die Schädel
sind in einem Rechteck angeordnet, in einer Reihe sind 15 Stück und es gibt acht
Reihen, somit ergeben sich insgesamt 120 Schädel. Um das Wachstum der Laufzeit
mit wachsender Anzahl an Schädeln zu ermitteln und zu vergleichen, wurden Tests
mit zunehmender Anzahl an Reihen ri mit ri ∈ {1,2,3,4,5,6,7,8}, also angefangen bei
15 bis hin zu 120 Schädeln in Schritten der Größe 15, durchgeführt. Sind alle Schädel
dargestellt, sieht die Grafik wie folgt aus.

Abbildung 5.1.: Testgrafik mit 120 Schädeln

Dazu wurde die Laufzeit der Erzeugung von 3000 Bildern gemittelt, also die durch-
schnittliche Zeit zur Erzeugung eines Bildes errechnet. Der Laufzeitvergleich liefert
dieses Ergebnis.

41



5. Zusammenfassung und Ergebnisse

20 40 60 80 100 120
0

0,5

1

1,5

Anzahl an Schädeln

Ze
it

[s
]

llvmpipe
GR3 SR

Abbildung 5.2.: Testergebnisse bei variabler Anzahl an Schädeln

Der Software-Renderer des GR3 ist im Falle von 120 Schädeln ungefähr acht Mal
schneller als die Implementierung von llvmpipe. Für 15 Schädel liefert der Software-
Renderer des GR3 ungefähr 25 Bilder pro Sekunde, was in einer Animation annähernd
flüssig wäre. Der konkurrierende Software-Renderer llvmpipe schafft unter gleichen
Bedingungen lediglich fünf Bilder pro Sekunde.
Eine Besonderheit an diesem Beispiel ist die enorm hohe Anzahl von sehr kleinen

Dreiecken, die größtenteils nur zur Einfärbung weniger oder gar keiner Pixel füh-
ren. Für eine hohe geometrische Komplexität mit geringer Anzahl zu füllender Pixel
schneidet der Software-Renderer des GR3 diesem Beispiel nach zu urteilen besser ab
als llvmpipe. Dies legt die Frage nahe, wie ein Laufzeitvergleich mit wenigen großen
Dreiecken im Gegensatz dazu aussieht.

5.2.2. Test mit geringer geometrischer Komplexität
Wie im vorherigen Abschnitt erläutert soll nun die Ausführungsgeschwindigkeit beim
Füllen mehrerer großer Dreiecke getestet werden. Dazu werden zwei Dreiecke gezeich-
net, die das gesamte Bild füllen. In GR3 bilden sie zusammen ein Dreiecksgitter, das
wie folgt aussieht.

Abbildung 5.3.: Testgrafik mit zwei das gesamte Bild abdeckenden Dreiecken
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5.2. Ergebnisse

Um ein repräsentatives Ergebnis zu erhalten, werden die dargestellten Dreiecke
mehrmals gezeichnet. Dabei befinden sich die Dreiecke in der zu zeichnenden Rei-
henfolge übereinander, sodass der Tiefentest keinen Einfluss auf das Ergebnis hat.
So wird das Wachstum der Laufzeit im Vergleich zur wachsenden Anzahl an großen
und übereinanderliegenden Dreiecken getestet, was der wachsenden Anzahl an Schä-
deln aus dem vorherigen Test entspricht, wobei das Verhältnis zwischen geometrischer
Komplexität und Anzahl zu füllender Pixel deutlich geringer ist. Getestet wurde mit
einer Auflösung von 1000 × 1000 Pixel. Die Anzahl der Dreiecke ist dabei ein Para-
meter, der von 200 bis 3000 pro Bild variiert und in Schritten der Größe 200 wächst.
Der Laufzeitvergleich liefert visualisiert das folgende Ergebnis.
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Abbildung 5.4.: Testergebnisse bei variabler Anzahl an Dreiecken

Der Software-Renderer ist für jede getestete Anzahl an Dreiecken langsamer. Die
Implementierung mit llvmpipe braucht für zusätzliche 200 Dreiecke circa 2,5 ms län-
ger. Der im Rahmen dieser Bachelorarbeit implementierte Software-Renderer benötigt
für denselben Schritt circa 5ms länger. Beide Laufzeiten wachsen linear mit der An-
zahl der Dreiecke, jedoch die des Software-Renderers des GR3 deutlich steiler, sodass
dieser tendetiell eher füllratenlimitiert ist.
Ein Unterschied in der Laufzeit lässt sich schon bei den ersten 200 Dreiecken er-

kennen, da sie dort für den Software-Renderer des GR3 bei der Messung mit der
geringsten Anzahl an Dreiecken ungefähr 5 mal so hoch ist. Dies hängt mit dem Auf-
wand für die Initialisierung der Threads, Tiefen- und Farbpuffer zusammen, die auch
für wenige Dreiecke schon viel Zeit in Anspruch nehmen und daher anteilig bei einer
simpleren Aufgabe mehr ins Gewicht fallen. Die Füllrate, also die Anzahl der Pixel,
die pro Sekunde eingefärbt werden können, scheint bei llvmpipe höher zu sein.
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5. Zusammenfassung und Ergebnisse

5.2.3. Test mit variabler geometrischer Komplexität und
konstanter Anzahl zu füllender Pixel

Die bisherigen Tests lassen vermuten, dass viele kleine Dreiecke, also eine hohe geome-
trische Komplexität, schneller mit dem im GR3 implementierten Software-Renderer
erzeugt werden können und wenige große schneller mit llvmpipe dargestellt werden
können. Dies legt einen Test nahe, bei dem die Geometrie veränderlich ist, aber die
Anzahl insgesamt zu füllender Pixel gleich bleibt. Es wird also die gleiche Fläche
gefüllt, während die Anzahl der Dreiecke, aus der sich die Fläche zusammensetzt,
variiert. So lässt sich nachvollziehen, wie die Größe und Anzahl der Dreiecke Einfluss
auf die Geschwindigkeit nimmt. Demnach lässt sich durch diesen Test zeigen, ob es
ein Verhältnis zwischen Komplexität und Anzahl zu füllender Pixel gibt, bei welchem
der Software-Renderer des GR3 schneller ist.

In diesem Testbeispiel wurde ein Dreieck erzeugt, welches rekursiv in gleich große
Teildreiecke zerlegt wird. Die einfache und doppelte Zerlegung eines Dreiecks sieht
dabei wie folgt aus.

(a) Nicht zerlegt (b) Einfach zerlegt (c) Doppelt zerlegt

Abbildung 5.5.: Testgrafik zur Zerlegung eines Dreiecks in Teildreiecke

Dadurch entsteht bei gleichbleibender Anzahl an gefüllten Pixeln eine höhere geo-
metrische Komplexität. Interessant ist hier der Vergleich der Laufzeit bei wachsender
Anzahl Unterteilungen. Aufgetragen ist im folgenden die Anzahl der Dreiecke, die
durch die Unterteilung entstehen und die dafür benötigte Zeit. Erstellt wurden je-
weils 40000 Bilder mit einer Auflösung von 500 × 500 Pixeln.
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Abbildung 5.6.: Testergebnisse bei variabler Anzahl an durch Zerlegung entstehenden
Dreiecken

Die Laufzeit von llvmpipe wächst linear mit der Anzahl der Dreiecke an, obwohl
die Anzahl einzufärbender Pixel gleich bleibt. Hingegen ist die benötigte Zeit vom
im GR3 implementierten Software-Renderer nahezu konstant, genauso wie die An-
zahl eingefärbter Pixel. Im Falle von über circa 16000 Dreiecken, also ungefähr ei-
ner siebenfachen rekursiven Unterteilung des Dreiecks, führen viele der Teildreiecke
überhaupt nicht zur Einfärbung eines Pixels. Trotzdem nehmen besagte Dreiecke bei
llvmpipe nahezu die gleiche Zeit in Anspruch, wie welche, die zur Einfärbung führen,
was daran erkennbar ist, dass sie gleichermaßen für einen Anstieg der Laufzeit sorgen.

5.2.4. Test mit konstanter geometrischer Komplexität und
variabler Anzahl zu füllender Pixel

Im Beispiel aus Abschnitt 5.2.3 variierte die geometrische Komplexität, die Anzahl
zu füllender Pixel blieb jedoch konstant. In diesem Beispiel soll dies umgekehrt wer-
den, sodass geprüft wird, wie sich bei gleichbleibender geometrischer Komplexität die
Laufzeit bei steigender Anzahl zu füllender Pixel bei den beiden Varianten verhält.
Dazu wird die gleiche Grafik wie aus dem Testbeispiel mit geringer geometrischer
Komplexität verwendet, jedoch werden pro Bild keine überlappenden, sondern nur
zwei zusammen das gesamte Bild abdeckende Dreiecke gezeichnet. Die variable Größe
ist die Auflösung des gesamten Bildes, mit ihr variiert entsprechend die Anzahl insge-
samt einzufärbender Pixel. Getestet wird eine Auflösung von 10× 10 bis zu 200× 200
ansteigend mit Schrittgröße 10. Die Laufzeitmessung liefert das folgende Ergebnis für
die Zeit pro Bild.
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Abbildung 5.7.: Testergebnisse bei variabler Auflösung

Die aus den vorherigen Testbeispielen hergeleitete Vermutung, für kleine Dreie-
cke wäre die Laufzeit beim in GR3 implementierten Software-Renderer geringer als
bei llvmpipe, bestätigt sich für dieses Testbeispiel. Mit steigender Auflösung wächst
die Laufzeit beider Testbeispiele, jedoch die von llvmpipe flacher. Dies ist demnach
das entsprechende Gegenbeispiel zum vorherigen Testbeispiel, bei dem der Software-
Renderer des GR3 die Laufzeit von llvmpipe bei steigender Komplexität unterschrei-
tet, da hier bei steigender Anzahl an auszufüllenden Pixeln und gleicher Komplexität
llvmpipe verhältnismäßig schneller wird. Für kleine Dreiecke ist der Software-Renderer
des GR3 schneller.

5.2.5. Test der Skalierung bei variabler Anzahl an Threads

Abbildung 5.8.: Testgrafik mit einem Schädel
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Das letzte Testbeispiel soll darstellen, wie die Performance des Software-Renderers des
GR3 abhängig von der Anzahl verfügbarer CPU Kerne skaliert. Getestet wird eine
Grafik mit hoher geometrischer Komplexität, aber auch einer insgesamt großen Anzahl
zu füllender Pixel. Die Testgrafik zeigt den selben Schädel wie im Test mit hoher
geometrischer Komplexität, jedoch wird er dieses Mal größer skaliert und lediglich
einmal dargestellt, wie der folgenden Abbildung 5.8 entnommen werden kann.
Auf dem verwendeten System sind nun anders als in den vorherigen Beispielen 12

Kerne beziehungsweise 24 Threads verfügbar [Int]. Für diesen Test wird die Anzahl
verwendeter Threads variiert und dabei die Laufzeit gemessen. Visualisiert ergibt sich
die folgende Grafik.
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Abbildung 5.9.: Testergebnisse bei variabler Anzahl an Threads

Die Laufzeit nimmt besonders durch Hinzufügen eines zweiten, dritten und vierten
Threads ab. Anschließend fällt sie nur noch leicht, bis sie dann circa ab dem zwölften
Thread wieder wächst. Dies liegt daran, dass dann insgesamt zwölf Threads und zu-
sätzlich ein Main Thread arbeiten, sodass kein echter CPU-Kern mehr verfügbar ist,
sondern nur noch solche, die durch Hyperthreading entstehen. Des Weiteren bewirkt
die Parallelisierung für hohe Anzahlen an Threads keinen Geschwindigkeitsvorteil,
weil dann der Zusatzaufwand pro Thread (inklusive Allokationen) die aufgeteilte Ar-
beit des Rendering Prozesses dominiert.

5.2.6. Schlussfolgerung aus den Tests
Die Tests legen nahe, dass der implementierte Software-Renderer primär durch die
Anzahl zu füllender Pixel limitiert ist. Die Laufzeit wächst hauptsächlich mit stei-
gender Anzahl von insgesamt zu füllenden Pixeln, wie dem Beispiel mit geringer
geometrischer Komplexität entnommen werden kann. Hingegen kann eine feste An-
zahl an Pixeln unabhängig von seiner Geometrie in nahezu konstanter Zeit dargestellt
werden, wie dem Testbeispiel 5.2.3 entnommen werden kann.

47



5. Zusammenfassung und Ergebnisse

Die vom Software-Renderer llvmpipe benötigte Laufzeit wächst primär mit der
geometrischen Komplexität, wie Beispiel 5.2.3 zeigt. Die Füllrate ist dort häufig nicht
der ausschlaggebende limitierende Faktor der Rasterisierung, also wird ein Objekt
der gleichen geometrischen Komplexität in linear mit seiner Größe ansteigender Zeit
rasterisiert, wie Beispiel 5.2.4 zeigt. Das Wachstum der Laufzeit im Verhältnis zur dar-
gestellten Größe ist dabei deutlich geringer, als die beim Software-Renderer des GR3,
also ist die Rate an befüllten Pixeln pro Sekunde bei llvmpipe höher. Das Testbeispiel
5.2.1 untermauert das starke Laufzeitwachstum bei wachsender geometrischer Kom-
plexität, während die Anzahl einzufärbender Pixel pro Schädel langsamer wachsen als
die geometrische Komplexität.
Für übliche Anwendungsfälle ist der in GR3 implementierte Software-Renderer ge-

eigneter, da häufig sehr detaillierte Strukturen mit vielen kleinen Dreiecken gezeichnet
werden müssen. Die Füllrate ist häufig nicht so hoch, dass sie an ihre Grenzen stößt.
Aus diesem Grund wäre ein Wachstum der Zeit, das primär von der geometrischen
Komplexität abhängt, ungeeigneter als eins, das von der Anzahl der zu füllenden Pixel
abhängt.

5.3. Ausblick
Aus den Testfällen ergibt sich unmittelbar die Verbesserungsmöglichkeit, die Füllrate
zu erhöhen. Dadurch würden mehr Pixel pro Zeiteinheit eingefärbt werden können
und die Laufzeit insbesondere für große Dreiecke enorm reduziert werden. Erreicht
werden könnte dies zum Beispiel durch Vektorisierung der Rasterisierung, auch wenn
der erste Versuch diesbezüglich die Laufzeit ansteigen ließ. Außerdem könnte sich das
Parallelisieren des Zeichenvorgangs eines großen Dreiecks ebenfalls als lohnenswert
herausstellen.
Der Software-Renderer könnte insofern erweitert werden, als dass andere Kan-

tenglättungsalgorithmen implementiert werden. GR3 unterstützt bislang ausschließ-
lich das rechenintensive Verfahren SSAA, welches auf der CPU erledigt wird und gute
Ergebnisse liefert. Zum einen könnten die dafür benötigten Operationen parallelisiert
werden. Zum anderen können alternative und effizientere Kantenglättungsalgorith-
men implementiert werden, wie zum Beispiel FXAA und SMAA aus [Gra16]. Dies liefert
zwar andere Ergebnisse, jedoch ist die Ausführungsgeschwindigkeit niedriger und die
Ergebnisse sind qualitativ trotzdem deutlich besser als ohne Verwendung von Kan-
tenglättung.
Sind die Daten eines Dreiecksgitter mit einem Indexpuffer gegeben, finden die

Transformationen von Eckpunkten aus den in Abschnitt 4.3.3 erläuterten Gründen
nicht parallel statt. Der Main-Thread nimmt die Transformationen aller Eckpunke
vor und der restlichen Threads arbeiten dann auf den bereits transformierten Eck-
punkten. Stattdessen kann die Arbeit vorher auf die Threads verteilt werden, sodass
jeder Thread zunächst einen Anteil an Eckpunkten transformiert und anschließend
seinen Anteil an Dreiecken rasterisiert.
Teile von Dreiecksgittern, die am Ende nicht innerhalb des darzustellenden Be-
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5.3. Ausblick

reiches liegen, werden bei dem im Rahmen dieser Bachelorarbeit implementierten
Software-Renderer erst in Pixelkoordinaten abgeschnitten (Clipping). Die Dreiecke,
die sich gänzlich außerhalb des Bildes befinden, könnten schon vorher (z.B. im View-
Space) verworfen werden, sodass sie nicht mehr den Berechnungen von der Rasteri-
sierung unterzogen werden. Dies bringt vor allem dann einen Geschwindigkeitsvorteil,
wenn viele Dreiecksgitterteile außerhalb des darzustellenden Bereiches liegen.
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A. Anhang

A.1. Ergebnisse der Laufzeitmessungen
Im folgenden werden die Zeiten der Laufzeitmessungen aus Kapitel 5 aufgeführt.

A.1.1. Test mit hoher geometrischer Komplexität

Laufzeit in ms
Anz. Schädel llvmpipe GR3 SR

15 208 44
30 408 75
45 596 91
60 791 115
75 977 141
90 1175 159
105 1349 180
120 1531 197

A.1.2. Test mit geringer geometrischer Komplexität

Laufzeit in ms
Anz. Dreiecke llvmpipe GR3 SR

200 5,91 28,87
400 7,41 36,58
600 9,99 40,24
800 11,54 43 45
1000 13,52 51,48
1200 16,51 56,34
1400 17,97 62,74
1600 19,60 68,60
1800 21,64 75,79
2000 23,94 80,16
2200 25,68 86,13
2400 27,60 93,96
2600 29,69 101,30
2800 31,99 104,03
3000 34,17 110,45

51



A. Anhang

A.1.3. Test mit variabler geometrischer Komplexität und
konstanter Anzahl zu füllender Pixel

Laufzeit in ms
Anz. Dreiecke llvmpipe GR3 SR

5002 2,44 5,13
7003 2,93 5,09
9004 3,44 5,13

11005 3,92 5,36
13006 4,47 5,32
15007 4,97 5,35
17008 5,56 5,25
19009 6,54 5,20

A.1.4. Test mit konstanter geometrischer Komplexität und
variabler Anzahl zu füllender Pixel

Laufzeit in ms
Anz. Pixel GR3 SR llvmpipe

100 0,152 0,192
400 0,158 0,194
900 0,159 0,200
1600 0,163 0,206
2500 0,165 0,210
3600 0,172 0,213
4900 0,189 0,219
6400 0,205 0,221
8100 0,228 0,235
10000 0,258 0,256
12100 0,280 0,279
14400 0,310 0,299
16900 0,345 0,313
19600 0,371 0,339
22500 0,400 0,371
25600 0,448 0,399
28900 0,491 0,423
32400 0,547 0,459
36100 0,600 0,470
40000 0,665 0,492
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A.1. Ergebnisse der Laufzeitmessungen

A.1.5. Test der Skalierung bei variabler Anzahl an Threads

Laufzeit in ms
Anz. Threads GR3 SR

1 34,58
2 22,89
3 18,21
4 16,71
5 15,70
6 14,88
7 14,73
8 14,43
9 14,21

10 14,14
11 14,16
12 14,38
13 15,23
14 15,71
15 15,97
16 16,20
17 16,43
18 16,47
19 16,61
20 16,80
21 16,93
22 17,14
23 17,38
24 17,63
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