Bachelorarbeit im Rahmen des Studiengangs
Scientific Programming

Fachhochschule Aachen, Campus Jiilich

Fachbereich 9 — Medizintechnik und Technomathematik

Entwicklung und Optimierung eines
Software-Renderers fur die GR3-Grafikbibliothek

Jiilich, den 26. August 2019

Jonas Ritz

Eigenhandigkeitserklarung

Diese Arbeit ist von mir selbststindig angefertigt und verfasst. Es sind keine ande-
ren als die angegebenen Quellen und Hilfsmittel benutzt worden.

(Ort, Datum) (Unterschrift)

Diese Arbeit wurde betreut von:

1. Prufer: Prof. Dr.-Ing. U. Stegelmann (FH Aachen, Campus Julich)
2. Priifer: Florian Rhiem (FZ Jilich, PGI/JCNS-TA)

Sie wurde angefertigt in der Forschungszentrum Jiilich GmbH im Peter Grinberg
Institut / Jilich Centre for Neutron Science.

9 JULICH

Forschungszentrum

Wissenschaftler am Peter Griinberg Institut/Jiilich Centre for Neutron Science un-
tersuchen in Experimenten und Simulationen Form und Dynamik von Materialien wie
Polymeren, Zusammenlagerungen grofler Molekiile und biologischen Zellen sowie die
elektronischen Eigenschaften von Festkorpern. Fiir die Prasentation der in diesem Zu-
sammenhang anfallenden Forschungsergebnisse in Vortrédgen und Veroffentlichungen
missen haufig dreidimensionale Strukturen in Echtzeit dargestellt werden.

Bei der Darstellung besagter Strukturen wird bislang in GR3 auf OpenGL, die Spe-
zifikation einer Programmierschnittstelle zur hardwarebeschleunigten Erzeugung von
3D-Grafiken, zurtickgegriffen. Die zur Nutzung von OpenGL notwendigen Hardware-
komponenten und Bibliotheken sind allerdings in Umgebungen wie Docker-Containern
oder Servern ohne grafische Ausgabe oft nur eingeschrankt oder gar nicht verfiigbar.
Um dennoch eine performante dreidimensionale Visualisierung in besagten Umgebun-
gen zu ermoglichen, soll im Rahmen dieser Bachelorarbeit der Software-Renderer aus
[Rit19], der bislang nur bivariate Funktionen als Oberflichen visualisieren kann, in
seiner Funktionalitdt erweitert und optimiert werden, um verschiedene in Dreiecke
zerlegte dreidimensionale Strukturen in angemessener Zeit darstellen zu kénnen. Die
dabei erzeugten Grafiken sollen zu der Ausgabe der bisher verwendeten, hardware-
beschleunigten Variante des GR3 nahezu identisch sein. Von besonderer Relevanz ist
hierbei die Minimierung der Laufzeit, welche sich durch verschiedene Techniken an
die durch die hardwarebeschleunigte Variante erzielte anndhern soll. So wird in Zu-
kunft auf Systemen ohne ausreichende Grafikhardware automatisch auf den Software-
Renderer zuriickgegriffen, ohne dass dies zu erkennbaren optischen Unterschieden oder
groben Differenzen in der Ausfithrungszeit fithrt.

Inhaltsverzeichnis

1. Einleitung 1
2. Entwicklung und Erweiterung 2
2.1. Ansatz des bisherigen Rasterisierers. 2
2.1.1. Kritik an der Rasterisierung des Bresenham-Algorithmus 3

2.2. Rasterisierung mit umgebendem Viereck 4
2.3. Zeichnen eines Dreiecksgitters 6
2.4. Automatische Auswahl des Software-Renderers 8
2.5. Beleuchtung 8
2.5.1. Transformation der Normalen 9

2.5.2. Interpolation der Normalen 11

2.5.3. Berechnung der Farbe unter Berticksichtigung des Lichteinfalls . 11

2.6. Kantenglattung 12
2.6.1. Ziel 12

2.6.2. Funktionsweise 14

2.6.3. Realisierung 14

3. Optimierung 16
3.1. Reduktion von Speicheroperationen 16
3.2. Berechnung baryzentrischer Koordinaten. 17
3.3. Rasterisierung 18
3.3.1. Optimierung des vorhandenen Algorithmus 18

3.3.1.1. Frihzeitiges Clipping 18

3.3.1.2. Abbruchbedingung innerhalb jeder Zeile 19

3.3.1.3. Rasterisierung von links und rechts 19

3.3.2. Window Search Rasterisierung 21

3.3.2.1. Kritik an der Rasterisierung mit umgebenden Rechteck 21
3.3.2.2. Ziel und Funktionsweise der ,Window Search Rasteri-

SIETUNG™ 23

4. Parallelisierung 26
4.1. Paralleles Zeichnen von Dreiecksgitterteilen 26
4.1.1. Mutex-Lock des kritischen Bereiches 27

4.1.2. Mehrere Farb- und Tiefenpuffer mit anschlieBendem Mischen . . 28

4.1.3. Teile von Dreiecksgittern in Queues 29

4.1.3.1. Motivation. 29

4.1.3.2. Implementierung 30

Inhaltsverzeichnis

4.2. Zeilenweise Verteilung der Arbeit auf die Threads
4.3. Weitere Optimierungen

4.3.1.
4.3.2.
4.3.3.

Nutzen allokierter Teile des letzten Bildes
Fillen der Farb- und Tiefenpuffer
Arbeit mit und ohne Indexpuffer

5. Zusammenfassung und Ergebnisse
5.1. Zusammenfassung
5.2. Ergebnisse

5.2.1.
5.2.2.
5.2.3.

5.2.4.

5.2.5.
5.2.6.

Test mit hoher geometrischer Komplexitat
Test mit geringer geometrischer Komplexitat
Test mit variabler geometrischer Komplexitidt und konstanter

Anzahl zu fillender Pixel
Test mit konstanter geometrischer Komplexitiat und variabler

Anzahl zu fullender Pixel
Test der Skalierung bei variabler Anzahl an Threads
Schlussfolgerung aus den Tests

5.3. Ausblick

A. Anhang
A.1. Ergebnisse der Laufzeitmessungen

Al.1.
Al1.2.
A.1.3.
Al14.

A.1.5.

Literatur

ii

Test mit hoher geometrischer Komplexitat
Test mit geringer geometrischer Komplexitat
Test mit variabler geometrischer Komplexitat und konstanter

Anzahl zu fillender Pixel
Test mit konstanter geometrischer Komplexitiat und variabler

Anzahl zu fillender Pixel,
Test der Skalierung bei variabler Anzahl an Threads

Abbildungsverzeichnis

2.1.
2.2.
2.3.
2.4.
2.5.

2.6.
2.7.
2.8.
2.9.

2.10.
2.11.

2.12.

2.13.

3.1.
3.2.
3.3.

3.4.
3.5.

3.6.

4.1.
4.2.
4.3.

4.4.
4.5.

4.6.
4.7.

Rasterisierungsvorgang mit dem Bresenham-Algorithmus
Fehler des Rasterisierungsvorgangs mit dem Bresenham-Algorithmus . .
Darstellung einer bivariaten Funktion als Oberflache
Liicke im Rasterisierungsvorgang mit dem Bresenham-Algorithmus . . .
Das kleinste ein Dreieck umgebende Rechteck, in dem alle potentiell

einzufarbenden Pixel liegen L.
Darstellung der einzelnen Dreiecksgitter
Alle Dreiecksgitter der Szene vereint
Zwei Beleuchtungsmoglichkeiten derselben Szene
Achsenweise unterschiedliches Skalieren und der Einfluss auf den Nor-

malenvektor
Unerwiinschte Effekte ohne Kantenglattung
Die selbe Szene ohne und mit Kantenglattung (Downsampling der vier-

fachen Auflosung) zur Verdeutlichung des Treppeneffekts
Abtastpunkte fiir verschiedene ¢, an denen der Farbwert errechnet und

zusammen mit den anderen gemittelt dem Pixel zugewiesen wird
Ubersetzung der ¢? = 4-fach aufgelosten Grafik zur Endgrafik

Teilflachen zur Berechnung baryzentrischer Koordinaten
Der zeilenweise frithere Abbruch bei der Rasterisierung
Beispielhafter Worst-Case fiir die Rasterisierung beziiglich der Bedin-

gung aus 3.3.1.2 . . oL
Abtastpunkte der Rasterisierung mit umgebenden Viereck
Worst-Case fiir die Optimierung des Zeilendurchlaufes fiir beide Rich-

tungen e
Abtastpunkte der Window Search Rasterisierung.

Visualisierung eines Indexpuffers
Darstellung der Dreiecksgitterteile in den Farbpuffern der Threads . . .
Grober Ablauf der ersten Variante des parallelen Renderns fiir n, = 4

Threads
Vereinfachte Abarbeitung fiir jeden Thread
Vereinfachte Einreihung der Teilaufgaben in die einzelnen zu den Thread
gehorigen Queues L
Einteilung der Puffer auf die verschiedenen Threads

Grober Ablauf der zweiten Variante des parallelen Renderns fiir n; = 4
Threads e

iii

Abbildungsverzeichnis

iv

5.1.
0.2,
5.3.
0.4.
5.5.
2.6.

2.7.
5.8.
5.9.

Testgrafik mit 120 Schadeln 41
Testergebnisse bei variabler Anzahl an Schadeln 42
Testgrafik mit zwei das gesamte Bild abdeckenden Dreiecken 42
Testergebnisse bei variabler Anzahl an Dreiecken 43
Testgrafik zur Zerlegung eines Dreiecks in Teildreiecke 44
Testergebnisse bei variabler Anzahl an durch Zerlegung entstehenden

Dreiecken 45
Testergebnisse bei variabler Auflosung 46
Testgrafik mit einem Schadel 46
Testergebnisse bei variabler Anzahl an Threads. 47

1. Einleitung

Héaufig dienen Grafiken in wissenschaftlichen Veroffentlichungen der besseren Ver-
stindlichkeit und Uberschaubarkeit der Erkenntnisse fiir den Leser. Zusétzlich helfen
sie den Wissenschaftlern selbst einen Uberblick iiber unter Umsténden grofie aus
Experimenten oder Simulationen resultierenden Datenmengen zu gewinnen. Die Fr-
zeugung einer Grafik sollte moglichst performant sein, um hochauflésende Darstel-
lungen in angemessener Zeit mit verschiedenen Parametern generieren zu kénnen.
Zudem sollte die Funktionalitiat vollig unabhangig vom verwendeten System ermog-
licht werden, um Portabilitdat und Benutzerfreundlichkeit zu steigern. GR3 erfiillt die
besagten Anforderungen beziiglich dreidimensionaler Grafiken. Zum Rendern wird
intern OpenGL verwendet, das auf dem verwendeten System in Form von Systembi-
bliotheken oder Grafikkartentreibern implementiert sein muss. Auf bestimmten Sys-
temen und in Docker-Containern ist jedoch haufig keine OpenGL Implementierung
verflighar. Sie kann zwar durch Alternativen wie Mesa, worin der Software-Renderer
llvmpipe [VMw] enthalten ist, ersetzt werden, jedoch erfordert dies grofie Abhén-
gigkeiten die in GR3 nicht zuletzt wegen des Speicherbedarfs und der angestrebten
Plattformunabhéngigkeit vermieden werden sollen.

Daher soll im Rahmen dieser Bachelorarbeit ein Software-Renderer entwickelt wer-
den, der die gesamte Verwendung von OpenGL in GR3 ersetzen kann. Wie ein-
gangs erwahnt ist die benotigte Laufzeit relevant, sodass die Funktionalitit, die der
Software-Renderer umfasst, spezifisch auf GR3 abgestimmt und moglichst effizient
implementiert werden soll. Im Wesentlichen besteht der Rendering-Prozess aus der
Transformation Eckpunkten, die zu triangulierten Oberflichen gehéren, und der mog-
lichst effizienten Rasterisierung der einzelnen daraus resultierenden Dreiecke. Die bis-
lang von OpenGL bezichungsweise dessen Implementierung erledigte Rasterisierung
zerfallt zum einen in das Durchlaufen der zur Darstellung des Dreiecks notigen Pixel
und zum anderen in die Farbberechnung jedes Pixels unter Berticksichtigung der Be-
leuchtung und Farben der Eckpunkte. Durch Abstimmung der Implementierung auf
die Struktur des GR3 und zusétzlicher Verwendung verschiedener Techniken zur Par-
allelisierung soll die Laufzeit zur Erstellung und korrekten Fiillung eines Farbpuffers,
der auch aus dem Renderingvorgang mit OpenGL hervorgeht, méglichst minimiert
werden.

2. Entwicklung und Erweiterung

Der bislang entwickelte Software-Renderer aus [Rit19] unterstiitzt lediglich die Visua-
lisierung bivariater Funktionen als Oberflaichen. Die vom Rasterisierer verursachten
Fehler werden im Folgenden analysiert und deren Ursache festgestellt, anschliefend
sollen sie durch die Implementierung einer alternativen Rasterisierungsmethode ent-
fernt werden. Weiterhin soll die Funktionalitat auf alle durch das GR3 darstellbaren
Szenen erweitert werden.

Im Zuge dessen wird das Prinzip des Zeichnens einzelner Dreiecksgitter aufgegriffen
und die die Berechnung einer Beleuchtung mit punktueller Lichtquelle implementiert.
Vom Software-Renderer soll ebenfalls Kantengladttung unterstiitzt werden, die analog
zur hardwarebeschleunigten Variante funktioniert.

2.1. Ansatz des bisherigen Rasterisierers

Um darzustellen, wieso ein alternatives Verfahren zur Rasterisierung implementiert
wird, wird hier zuerst kurz die Funktionsweise des bisherigen Verfahrens eingegangen.
Dadurch werden die Nachteile und Komplikationen aufgedeckt, welche Ursache fiir die
Neuimplementierung sind.

Die éltere Implementierung arbeitet mit dem Bresenham-Algorithmus, der zum
Zeichnen von Geraden auf Rasteranzeigen im Jahre 1962 entwickelt wurde. Dieser
ist sehr effizient und minimiert Rundungsfehler, da intern ausschliefllich diskrete Ko-
ordinaten verwendet werden [Bre62]. In der vorherigen Implementierung baut die
Rasterisierung eines Dreiecks auf der Rasterisierung der Kanten mit dem Bresenham-
Algorithmus auf. Zur Fiillung des Dreiecks werden dazu alternierend die gegeniiberlie-
genden Kanten als Linien gezeichnet und zwischen den dadurch entstehenden Begren-
zungen alle Pixel eingefarbt. Somit fiillt sich das Dreieck zeilenweise von unten nach
oben. Die durch den Linienzug entstandenen Grenzen sind in der folgenden Abbildung
2.1 blau markiert, die dazwischen eingefarbten Pixel dunkelgrau.

B <
TTTTTTTT?’
N+

+ |+ |+ |+)4
+[+

A

Abbildung 2.1.: Rasterisierungsvorgang mit dem Bresenham-Algorithmus

2.1. Ansatz des bisherigen Rasterisierers

2.1.1. Kritik an der Rasterisierung des Bresenham-Algorithmus

Fiir den Bresenham-Algorithmus im Zusammenhang mit der Darstellung von Dreie-
cken auf Rasteranzeigen werden in dieser Implementierung die Eckpunkte zunichst
ihrer y-Koordinate nach aufsteigend sortiert, damit das Dreieck von unten nach oben
rasterisiert werden kann. Dies fiihrt zu einem Anstieg der bendtigten Rechenzeit.

Des Weiteren ist zu berticksichtigen, dass die Veroffentlichung des Bresenham-
Algorithmus aus dem Jahre 1962 stammt. Moderne Rechnerarchitekturen unterstiit-
zen Gleitkommaoperationen mit einer hoheren Genauigkeit, als fiir die Berechnung
benotigt wird, was damals nicht der Fall war. Aulerdem sind die Rechenoperationen
fiir Gleitkommazahlen tiblicherweise genauso schnell, wie die fiir Ganzzahlen. Die Vor-
teile, die den Bresenham-Algorithmus als Linienzugalgorithmus auszeichnen, entfallen
also wegen des technischen Fortschrittes.

Das eigentliche Kernproblem und damit auch Hauptgrund fiir die Implementie-
rung eines neuen Algorithmus sind jedoch falsche Ergebnisse, die in dem Linienzugal-
gorithmus begriindet sind. Das Kriterium bei der Rasterisierung eines Dreiecks, ob
ein Pixel dazugehort beziehungsweise eingefirbt werden soll, besteht darin, ob des-
sen Mittelpunkt innerhalb des Dreiecks liegt. Beim Linienzug durch den Bresenham-
Algorithmus ist im Gegensatz dazu das Kriterium, wie grof3 der Abstand der aus dem
Pixel austretenden Linie von den beiden nachsten potentiell einzufdrbenden Pixeln
ist. In der folgenden Abbildung 2.2 sind die Pixel rot eingefarbt, die der Bresenham-
Algorithmus zwar als Einzufarbende markiert, aber letztendlich nicht eingefarbt wer-
den, da ihr Pixelmittelpunkt sich nicht innerhalb des Dreiecks befindet.

\fiq

5]
\i*\++++++++

.
~/

A

Abbildung 2.2.: Fehler des Rasterisierungsvorgangs mit dem Bresenham-Algorithmus

Die Abbildung untermauert, dass die Wahl dieses Algorithmus nicht optimal ist.
Die rot markierten Pixel werden in der Implementierung nicht eingefarbt, da dort min-
destens eine der baryzentrischen Koordinaten (vgl. Abschnitt 3.2) negativ ist [Rit19].
Werden diese trotzdem eingefarbt, resultiert beispielsweise in nicht passend darge-
stellten Rundungen, wie rechts in Abbildung 2.3 zu sehen. Links ist die korrekt durch
OpenGL rasterisierte Variante zu sehen.

2. Bntwicklung und Erweiterung

Abbildung 2.3.: Darstellung einer bivariaten Funktion als Oberflédche

Gleichzeitig konnen auch Liicken in der Zeichnung auftreten, falls ein Dreieck aus
nur einem Pixel besteht. Dies kénnte zum Beispiel wie in Abbildung 2.4 aussehen,
wobei M der Mittelpunkt des Pixels und A, B und C die Eckpunkte des Dreiecks
sind:

oSS
®

A

Abbildung 2.4.: Liicke im Rasterisierungsvorgang mit dem Bresenham-Algorithmus

Da der Mittelpunkt des Pixels innerhalb des Dreiecks liegt, muss dieser Pixel ent-
sprechend der Farbe des Dreiecks eingefirbt werden. Der Bresenham-Algorithmus
vollzieht jedoch keinen Schritt des Linienzugs, sodass es schlussendlich nicht zu einer
Einfiarbung kommt.

Auflerdem wurden in der bisherigen Implementierung des Rasterisierers die Koor-
dinaten jedes Eckpunktes als Ganzzahl hinterlegt. Jeder Eckpunkt wurde dabei zu
Beginn in diese Darstellung ohne Nachkommastellen tiberfithrt. Diese Speicherung
ist tberflissig, weil alle Berechnungen in FlieBkomma-Arithmetik stattfinden und zur
diskreten Indizierung der Farbpuffer in Ganzzahlen umgewandelt werden. Zudem wird
dadurch viel Speicherplatz belegt.

2.2. Rasterisierung mit umgebendem Viereck

Die im vorherigen Abschnitt beschriebene Rasterisierungsmethode soll durch eine ef-
fiziente und korrekte Alternative ersetzt werden. Eine mogliche Methode, um eine

2.2. Rasterisierung mit umgebendem Viereck

korrekte Rasterisierung zu gewahrleisten, besteht darin, bei jedem Dreieck fiir alle
vorhanden Pixel zu prifen, ob ihr Mittelpunkt innerhalb des Dreiecks fallt. Diese
Priifung kann mittels baryzentrischer Koordinaten fiir jeden Pixel erfolgen, welche
mindestens einen negativen Wert aufweisen, falls jener Pixel nicht innerhalb des Drei-
ecks liegt.

Um den Rechenaufwand zu reduzieren, wird die zu priifende Fléache zunéchst auf
das Rechteck begrenzt, welches das Dreieck exakt umgibt und alle Pixel enthélt, die
zur Einfiarbung in Frage kommen [Hen+11]. Bei allen anderen Pixel ist es unmog-
lich, dass deren Mittelpunkte innerhalb des Dreiecks liegen. Aus diesem Grund ist
deren Priifung und die damit zusammenhangenden, aufwendigen Rechenoperationen
nicht von Noten. Es gilt: Je kleiner das Dreieck, desto grofler die erzielte Ersparnis.
Beispielsweise erzielt ein Dreieck, dass die Halfte des Bildschirmes einnimmt keine
Ersparnis. Im Gegensatz dazu bezweckt diese Methode bei einem Dreieck, welches
lediglich einen Pixel bedeckt, eine Ersparnis von allen Pixeln, die bei der Priifung
ohnehin negative baryzentrische Koordinaten liefern wiirde und den Pixel nicht ein-
farben wiirde.

Die obere Kante des besagten umgebenden Rechtecks (sog. Bounding Box) befindet
sich auf der Hohe des hochsten Eckpunktes des Dreiecks und die untere Kante auf der
des tiefsten Eckpunktes. Analog dazu werden die seitlichen Begrenzungen durch die
minimalen und maximalen z-Werte der Eckpunkte ermittelt. So ein Rechteck konnte
zum Beispiel wie Abbildung 2.5 zeigt aussehen:

/
b

Abbildung 2.5.: Das kleinste ein Dreieck umgebende Rechteck, in dem alle potentiell
einzufarbenden Pixel liegen

Durch diese erste, intuitive Optimierung wird die Berechnung der baryzentrischen
Koordinaten aller restlichen Pixel beziiglich dieses Dreiecks gespart. In dem Rechteck
befinden sich meist doppelt so viele Pixel wie in dem Dreieck, also ist die Anzahl der

2. Bntwicklung und Erweiterung

Uberpriifungen doppelt so grof8 wie die Anzahl der Pixel im Dreieck. Fiir die Pixel im
Dreieck miissen ohnehin Koordinaten zur Interpolation berechnet werden, wichtig ist
die Reduzierung der Anzahl der restlichen, negativ gepriiften Pixel.

2.3. Zeichnen eines Dreiecksgitters

Der Software-Renderer des GR3 war bisher nur in der Lage bivariate Funktionen als

Oberflachen zu visualisieren, welche vom Nutzer mit Hilfe des Aufrufs von gr3_surface
erzeugt werden. Es konnen aber auch andere dreidimensionale Strukturen wie zum

Beispiel Molekiilgitter, Pendel oder dhnliches hardwarebeschleunigt visualisiert wer-

den. Im Rahmen der Bachelorarbeit soll diese Funktionalitit ebenfalls durch den

Software-Renderer unter moglichst geringem Verlust der Performance unterstiitzt wer-

den.

(a) Erstes Dreiecksgitter in der Szene (b) Zweites Dreiecksgitter in der Szene

(c) Drittes Dreiecksgitter in der Szene (d) Viertes Dreiecksgitter in der Szene
Abbildung 2.6.: Darstellung der einzelnen Dreiecksgitter

Eine dreidimensionale Grafik kann in GR3 aus mehreren Dreiecksgittern bestehen
[Rhil2], welche von GR3 beim Aufruf verschiedener Methoden aus den Ausgangsda-
ten erzeugt werden. Ein Dreiecksgitter enthélt ein Array mit FEckpunkten, die sich

2.3. Zeichnen eines Dreiecksgitters

auf der darzustellenden Struktur befinden, und Informationen dariiber, welche dieser
Eckpunkte zusammen ein Dreieck bilden. Die Information der Zusammengehorigkeit
der Dreiecke ist in der Regel durch die Reihenfolge gegeben, in der die Eckpunkte hin-
terlegt sind. Sie kann aber auch optional in einem Indexpuffer gespeichert sein, der
beliebige Eckpunkte referenzieren kann und daher eine mehrfache Nutzung gleicher
Eckpunkte erméglicht. Ein Dreiecksgitter bildet hdufig ein in der Szene vorhandenes
Objekt, wie Abbildung 2.6 verdeutlichen soll.

Zudem sind in jedem Dreiecksgitter die zu den Eckpunkten gehérenden Normalen
und Farben hinterlegt, welche im Weiteren zur Darstellung beitragen, indem sie die
Beleuchtung und die Farbe der Dreiecke und damit auch der Pixel beeinflussen. In ei-
nem Dreiecksgitter sind drei FlieBkommawerte hinterlegt, mit denen die Intensitét der
Farbkanéle rot, griin und blau RGB jedes Pixels reguliert werden kann. Dadurch kann
beispielsweise nur ein Farbkanal hervorgehoben oder die gesamte Szene verdunkelt
werden.

Der Software-Renderer erhélt einen mit einer Hintergrundfarbe geftllten Farbpuffer
und eine Liste mit Dreiecksgittern, mit deren Hilfe dieser Farbpuffer so gefiillt wird,
dass ihre Visualisierung in der erwiinschten Grafik resultiert. Dazu wird tber die Drei-
ecksgitter iteriert und jedes nacheinander ohne Hardwarebeschleunigung in besagten
Farbpuffer gezeichnet, sodass nach jedem abgearbeiteten Dreiecksgitter Informatio-
nen in jenem hinzukommen. In der resultierenden Grafik sind die Dreiecksgitter so
gemischt, das bei jedem Pixel die Farbinformation des Dreiecksgitters hinterlegt ist,
das sich am weitesten vorne befindet. In diesem Fall sieht die Grafik (Abbildung 2.7)
wie folgt aus.

Abbildung 2.7.: Alle Dreiecksgitter der Szene vereint

Innerhalb einer Szene koénnen verschiedene Transformationsmatrizen auf die Eck-
punkte verschiedener zu dieser Szene gehdrenden Dreiecksgitter angewandt werden.
Die Lichtquelle hat immer denselben Ursprung, da schliefllich die gesamte Szene aus
genau einer Position beleuchtet wird.

2. Entwicklung und Erweiterung

2.4. Automatische Auswahl des Software-Renderers

Der Zweck des Software-Renderers ist, wie eingangs erwéhnt, die Unterstiitzung der
durch die GR3-Grafikbibliothek moglichen Visualisierungen in Umgebungen, in denen
nicht auf die dazu notige Hardware zugegriffen oder jene nicht angemessen ersetzt
werden kann. Wiinschenswert ist also, dass die GR3-Grafikbibliothek selber anhand
der Umgebung, in der sie verwendet wird, entscheidet, ob mit dem Software-Renderer
oder mit OpenGL gezeichnet wird.

GRa3 entscheidet bislang abhéngig vom Betriebssystem durch Praprozessor-Makros
zur Ubersetzungszeit, wie OpenGL initialisiert werden soll. Die Abfrage des verwen-
deten Betriebssystems geschieht tiber jeweils auf solchen definierten Makros. Auch
das Vorhandensein eines Backends fiir OpenGL kann iiber Makros abgefragt werden.
Fallt diese Abfrage negativ aus, wird automatisch auf den Software-Renderer zurtick-
gegriffen und eine Warnung ausgegeben. Die Ergebnisse und die Laufzeit sollen sich
jedoch so wenig wie moglich unterscheiden.

2.5. Beleuchtung

Bis jetzt war der Software-Renderer nur in der Lage eine weifle, gleichméflige und
maximale Ausleuchtung aller Flédchen beziehungsweise Dreiecke zu ermoglichen. Dies
ist eine Variante des Ambient Lighting aus [Vril4], bei welchem eine omnidirektionale
Lichtquelle mit konstanter Intensitidt und fester Farbe die Szene ausleuchtet. Diese
cinfachste Art der Beleuchtung kommt zum Einsatz, wenn ein Uberblick tiber eine
Szene und die darin enthaltenen Objekte gewonnen werden soll. Zur Realisierung ist
dabei lediglich das Multiplizieren jeder Komponente der Farbe eines Pixels mit ge-
gebenen Konstanten notwendig, die dann die Farbintensitiat und das Mischverhaltnis
bestimmen.

(a) Ambient Lighting (b) Diffuse Lighting

Abbildung 2.8.: Zwei Beleuchtungsmoglichkeiten derselben Szene

2.5. Beleuchtung

In einer dreidimensionalen Szene kann jedoch die Position und Farbe einer punk-
tuellen Lichtquelle und dadurch die Richtung des Lichteinfalls definiert werden, die
dann im Diffuse Lighting [Vril4] resultiert. Abhangig davon sind Flichen, die nahezu
senkrecht zum Lichteinfall liegen, sehr intensiv beleuchtet und solche, deren Riickseite
beleuchtet wird, dunkel. Durch diesen Effekt wirkt die Szene wesentlich realistischer,
weil eine bessere Wahrnehmung der Tiefe entstehen kann und Schattierungen einen
dreidimensionalen Eindruck erwecken. Die hardwarebeschleunigte Variante des GR3
unterstiitzt diese Art der Beleuchtung [Rhil2]. Im direkten Vergleich unterscheiden
sich die Beleuchtungsvarianten fiir ein konkretes Beispiel wie in Abbildung 2.8 darge-
stellt.

Aus mathematischer Sicht ergibt sich die Beleuchtungsstirke an einer konkreten
Stelle abhangig vom Winkel zwischen der Richtung des Lichteinfalls und dem ortho-
gonal auf der Stelle stehenden Vektors [Vril4]. Je groBer der Winkel, desto weniger
wird diese Stelle beleuchtet. Wird die Riickseite einer Stelle beleuchtet, betrégt der
Winkel zwischen der Normale und dem Lichteinfall mehr als 90°, sodass diese dann
ganzlich unbeleuchtet bleibt. In der Regel kommen mehrere Beleuchtungstechniken
in Kombination zum Einsatz, jedoch unterstiitzt GR3 ausschliefllich Kombinationen
aus dem Diffuse Lighting und dem Ambient Lighting.

2.5.1. Transformation der Normalen

Zu jedem Eckpunkt ist ein Normalenvektor in Local-Space-Koordinaten (vgl. [Rit19])
gegeben, welcher senkrecht auf diesem steht. Bevor diese jedoch zur Berechnung der
Beleuchtungseffekte verwendet werden konnen, miissen Transformationen vorgenom-
men werden, bis schliellich View-Space-Koordinaten vorliegen, in denen die Berech-
nung der Farbe der Pixel, in die die Beleuchtung einfliefit, stattfindet. Um die Ko-
ordinaten in den View-Space zu transformieren kann nicht einfach mit der Model-
und anschliefend mit der View-Matrix multipliziert werden, wie es bei Eckpunkten
moglich ist.

Im Software-Renderer des GR3 werden analog zu OpenGL homogene Koordina-
ten fiir die Hinterlegung von Orts- und Richtungsvektoren verwendet, sodass die ei-
gentlich dreidimensionalen Koordinaten um eine vierte Dimension erweitert werden.
Bei den Ortsvektoren, wie zum Beispiel Eckpunkten, hat die vierte Komponente den
Wert Eins, damit durch lineare Operationen, wie eine Matrizenmultiplikation, eine
Translation formuliert werden kann. Da die Normalen Richtungsvektoren und kei-
ne Ortsvektoren sind, ist deren letzter Wert Null, sodass Translationen, die in der
vierten Spalte der Model-Matrix ausgedriickt werden, keinen Einfluss nehmen, weil
Richtungen unabhéngig von ihrer Ausgangsposition sind. Daher ist nur der Inhalt der
oberen linken 3x3 Matrix relevant, in der Rotationen und Skalierungen vorgenommen
werden.

Es konnen durch eine Matrix achsenweise verschiedene Skalierungen, also nicht
orthonormale Transformationsmatrizen, zu einer Anderung des Normalenvektors fiih-
ren. Veranschaulicht wird dieser Zusammenhang in der folgenden Abbildung

2. Entwicklung und Erweiterung

A c A C

Abbildung 2.9.: Achsenweise unterschiedliches Skalieren und der Einfluss auf den Nor-
malenvektor

Skaliert wurden die Eckpunkte hier beispielsweise mit der Matrix (obere linke 3 x 3-
Matrix):
0 0
10
0 01

M =

O W

Der Normalenvektor hat sich durch die Skalierung verdndert, eine Verwendung vom
urspriinglichen Normalenvektor bei der Berechnung der Beleuchtung wiirde zu einem
falschen Ergebnis fithren. Dies liegt darin begriindet, dass im Unterschied zu den Eck-
punkten der Normalenvektor nicht die Differenz zwischen zwei Punkten beschreibt,
wie es zum Beispiel bei der Kante in einem Dreieck der Fall ist, sondern als ein zur
Oberflache orthogonaler Richtungsvektor definiert wird.

Zur korrekten Berechnung wird in diesem Fall statt der Model View-Matrix M (Pro-
dukt aus Model- und View-Matrix) die sogenannte Normal-Matrix N [Len02] verwen-
det.

Sei ¥ die Richtung, auf der der Normalenvektor 7i senkrecht steht. Dann muss gelten:

0

i~ 0 = (N#i) - (M?)
(Nii)" (M)
AT’ NT M7

Nach der Voraussetzung gilt, dass 7 -0 = 0, also wenn gilt, dass NTM = I, ist genau
diese erfillt. Aus der Bedingung ergibt sich aus der oberen linken 3 x 3 Matrix der
ModelView-Matrix M die Formel fiir die gesuchte Normal-Matrix N:

I=NTM
< N=(MHT
Mit dieser werden alle Normalenvektoren vor deren Interpolation und der darauf

folgenden Berechnung der Farbe jedes Pixels multipliziert, sodass die Normalen nach
diesem Schritt in View-Space Koordinaten vorliegen. Fiir das genannte Beispiel wére

10

2.5. Beleuchtung

dies
2200
= V2
N-| o a2 o
0 0 1

Damit gilt in Abbildung 2.9 die Gleichung N7 = «-7i’, also erzeugt diese Transforma-
tion den korrekten Normalenvektor, der normiert dargestellt ist.

2.5.2. Interpolation der Normalen

Genau wie die Farben sind die Normalen nur an den Eckpunkten aller Dreiecke defi-
niert. Zum korrekten Einfiarben wird jedoch fiir jeden Pixel nicht nur die interpolierte
Farbe, sondern auch der zum Pixelmittelpunkt orthogonale Vektor benétigt, der die
Farbe durch das Diffuse Lighting beeinflusst. Die baryzentrischen Koordinaten \;
miissen ohnehin fiir spitere Berechnungen zur Interpolation der Tiefe und Farbe be-
rechnet werden. Auflerdem wurde bei der perspektivisch korrigierten Interpolation
der Farbe die Interpolation der invertierten Tiefenwerte

2z, =)\0i + Ali +)\2L
V0 Zuy Zug
durchgefiihrt. Der Wert z, wird im Anschluss verwendet, um auch die Normalen per-
spektivisch korrigiert interpolieren zu kénnen, da im Screen Space nicht der Norma-
lenvektor n, selbst, sondern = linear auf der Oberfliche des Dreiecks abhéngig von
den Normalen der Eckpunkte variiert [Rit19]. Analog konnen mit den selben Wer-
ten auch die in den View-Space transformierten Normalen perspektivisch korrigiert
interpoliert und pixelweise bereit gestellt werden.

- Ty Ty 2
np'=)\0 0+>\1 1+)\2 2
v0 2y Zug
!
_
=n,=—
Z/
p

2.5.3. Berechnung der Farbe unter Beriicksichtigung des
Lichteinfalls

Bei der Rasterisierung werden zur Einfarbung der Pixel die Farben, die ausschliellich
an den Eckpunkten der Dreiecke definiert sind, perspektivisch korrigiert interpoliert.
Hinzu kommt nun die Beriicksichtigung des Lichteinfalls. Dabei wird ein Pixel umso
intensiver beleuchtet, je mehr dessen Normalenvektor in die Richtung des Lichteinfalls
zeigt beziehungsweise je kleiner der Winkel zwischen diesen beiden Vektoren ist.

Der Normalenvektor ist durch Interpolation der Normalen der Eckpunkte gegeben.
Die Richtung des Lichts [kann in World-Space-Koordinaten vorgegeben werden und
muss ebenfalls wie die Normalenvektoren in den View-Space transformiert werden.
Ist sie nicht definiert, wird von einer Lichtquelle an der Position des Betrachters aus-

11

2. Entwicklung und Erweiterung

gegangen, welches in View-Space-Koordinaten dem Vektor [= (0,0,1)7 entspricht.
Aufgrund der Einfachheit dieses Standardvektors im View-Space findet die Berech-
nung in diesen Koordinaten statt, da sonst in einem anderen Koordinatensystem der
entsprechende Vektor ermittelt werden miisste.

Die folgende Erlduterung ist aus [Vril4] entnommen. Sind also nun sowohl die
Richtung des Lichteinfalls [und der Normalenvektor n, eines Pixels bekannt, kann
der Cosinus des Winkel fac zwischen diesen beiden Vektoren mit dem Skalarprodukt
aus den normierten Vektoren berechnet werden.

faCZL- "

(i

Ist der Wert fac < 0, so wird die Flache vom Licht nicht beeinflusst und trifft auf die
Riickseite, sodass fac = 0 gesetzt wird, was einer schwarzen Fléche entspricht. Andern-
falls wird der Wert fac iibernommen und dient als Multiplikator aller Farbkomponen-
ten. Somit ergibt sich die Farbe ¢, eines einzufarbenden Pixels nach Multiplikation
mit der durch perspektivisch korrigierte Interpolation ermittelten Farbe ¢,

facq;r = max(fac,0)

>
¢ = (facgir + facams) - ¢,

Der Wert facg,,, bezieht sich auf die Starke des Ambient Lighting, hat aber standard-
méafig den Wert Null. Um die Farbe des Lichtes zu berticksichtigen, die vom Nutzer
definiert werden kann, wird zum Schluss nochmal der Vektor ¢," komponentenweise
mit einem Vektor multipliziert, welcher in jeder Komponente eine Intensitét aus [0,1]
fiir jede Farbe des Lichtes enthalt.

2.6. Kantenglattung
2.6.1. Ziel

In der hardwarebeschleunigten Variante des GR3 wird Kantenglattung unterstiitzt.
Die darin implementierte Variante nennt sich Supersample Anti-Aliasing [Hug+14],
kurz SSAA. Ziel ist es, unerwiinschte optische Effekte, die auf einem Pixelraster ent-
stehen, zu minimieren.

Letztendlich besteht der Rasterisierungsvorgang aus der Zuweisung einer Farbe fiir
jeden Pixel. Diese Farbe wird dabei berechnet, indem die Bildbeschreibung ausschlie3-
lich an den Mittelpunkten der Pixel abgetastet wird und fiir diese Koordinaten die
resultierende Farbe berechnet dem Pixel zugewiesen wird. Alle Punkte des Bildes au-
Ber die Mittelpunkte der Pixel flieBen gar nicht in die Berechnung beziehungsweise
Darstellung ein (vgl. Abbildung 2.10 (a)), sodass Dreiecksgitter, die sich innerhalb
eines Pixels befinden, aber dessen Mittelpunkt nicht tiberschneiden tiberhaupt keine
Beriicksichtigung in der Visualisierung finden. Bei regelméfliger Anordnung kleiner
Dreiecksgitter gehen all diese Daten verloren, was einer der unerwiinschten Effekte

12

2.6. Kantengldttung

ist, die SSAA zu beheben versucht. Besonders ins Gewicht fallen kann dieser Effekt
bei der Darstellung eines schachbrettdhnlichen Musters, wenn zwischen zwei Abtast-
punkten ein ganzes Feld verloren geht (vgl. Abbildung 2.10 (b)) und deswegen zwei
gleiche Farben in zwei Reihen aufeinander folgen. In derartigen Féllen wird die Grafik
als unterabgetastet bezeichnet. Im Allgemeinen kann nie die exakte Darstellung einer
Bildbeschreibung garantiert werden, da sonst unendlich viele Abtastungspunkte und
Pixel notwendig wéren, um theoretisch beliebig kleine Dreiecksgitter genau darstellen
zu koénnen.

(a) Dreieck innerhalb eines Pixels, (b) Abtastung eines schachbrettihn-
das durch die Abtastung nicht re- lichen Musters unter Verlust ei-
gistriert wird nes Feldes

Abbildung 2.10.: Unerwiinschte Effekte ohne Kantenglattung

Ein weiterer negativer Effekt von Rastergrafiken ist der Treppeneffekt, welcher das
kantige Erscheinungsbild gerasterter Objekte beschreibt. Besonders préasent wird die-
ser Effekt in Animationen, weil sich dort Teile des Bildes ruckartig bewegen oder gar
zu flimmern scheinen.

(a) Ohne Kantenglittung (b) Mit Kantenglattung

Abbildung 2.11.: Die selbe Szene ohne und mit Kantenglittung (Downsampling der
vierfachen Auflésung) zur Verdeutlichung des Treppeneffekts

13

2. Entwicklung und Erweiterung

2.6.2. Funktionsweise

Ohne SSAA wird die Bildbeschreibung an allen Pixelmittelpunkten des schlussendlich
berechneten Bildes abgetastet, um eine moglichst gleichméfige und genaue Darstel-
lung zu ermoglichen. Der Pixel wird in der Farbe eingefarbt, die die Bildbeschreibung
in dessen Mittelpunkt annimmt.

Mit SSAA wird die Bildbeschreibung innerhalb eines Pixels an n gleichméfig ver-
teilten Positionen ausgewertet. Durch einen Rekonstruktionsfilter wird anschliefend
aus diesen n Farbinformationen der abgetasteten Stellen eine Farbe berechnet und
dem Pixel schlussendlich zugewiesen. Dabei unterscheiden sich verschiedene Arten
des Supersampling sowohl durch die unterschiedlichen Anordnungen und Anzahlen
der Abtastpositionen pro Pixel, als auch durch die Wahl des Rekonstruktionsfilters.
Fir gewohnlich besteht dieser aber aus der Mittelung aller berechneten Farben der
zu einem Pixel gehorigen Abtastpunkte. Dabei konnen sich Pixel auch Abtastpunkte
teilen, wenn sie auf den Grenzen liegen. Dies wird Sample Sharing genannt [Gral6].

2.6.3. Realisierung

In GR3 existiert die Funktion gr3_setquality(int quality), mit der die Anzahl
der Abtastpunkte pro Pixel und dadurch die Qualitat der erzeugten Grafik festgelegt
wird. Beim Aufruf ersetzt GR3_QUALITY_OPENGL_<g>X_SSAA den Parameter quality,
wobei ¢ Werte aus der Menge {2,4,8,16} annehmen kann. Letzten Endes resultiert dies
in ¢? Abtastungspunkten pro Pixel, welche gleichméBig verteilt werden. [Hug+14]

+ + + +

+ +
+ + + +
+ + + +

+ +
+ + + +

(a) Abtastpunkte innerhalb eines Pi- (b) Abtastpunkte innerhalb eines Pi-
xels fiir ¢ = 2 xels fiir ¢ =4

Abbildung 2.12.: Abtastpunkte fiir verschiedene ¢, an denen der Farbwert errechnet
und zusammen mit den anderen gemittelt dem Pixel zugewiesen
wird

Wird diese Methode vom Nutzer aufgerufen und mit der Qualitiat g seiner Wahl
spezifiziert, wird die Grafik intern zunachst in ¢?-facher Auflosung gerendert, d.h.
mit g-facher Breite und Hoéhe. So wird pro Abtastpunkt ein Pixel erzeugt, in des-
sen Mitte sich der Abtastpunkt befindet. Aus dieser hoher aufgelosten Grafik werden
nun die Farbinformationen von den Quadraten mit jeweils ¢? Pixeln mittels Rekon-
struktionsfilters zusammengefasst, indem der Wert jedes Farbkanals von jedem dieser
Pixel addiert und dann mit q% multipliziert wird. Die daraus resultierende Farbe wird
dem entsprechenden Pixel der fertigen Grafik, die wiederum nicht ¢?-fach sondern

14

2.6. Kantengldttung

einfach aufgelost ist, zugewiesen. Dieser Vorgang simuliert das mehrfache Abtasten
der Bildinformation pro Pixel in der endgiiltigen Grafik.

(a) Hoher aufgeloste Grafik mit ¢ = 2 (b) Resultierendes Ergebnis durch
Zusammenfassung der hoher auf-
gelosten Grafik

Abbildung 2.13.: Ubersetzung der ¢? = 4-fach aufgelosten Grafik zur Endgrafik (ein-
fach aufgelost)

15

3. Optimierung

Wie in Kapitel 1 erwahnt soll die Laufzeit des Software-Renderers moglichst gering
sein, um aus Datenmengen resultierende Darstellungen moglichst in Echtzeit dar-
stellen zu konnen. Dazu wird im folgenden die benétigte Zeit fiir den bislang nicht
parallelen Renderingprozess reduziert. Im Fokus sind dabei die Vermeidung aufwén-
diger Speicheroperationen, die effizientere Berechnung baryzentrischer Koordinaten
und vor allem die Beschleunigung der Rasterisierung.

3.1. Reduktion von Speicheroperationen

Die Koordinaten der Eckpunkte sowie deren Farben und Normalenvektoren werden
vom Software-Renderer als Array aus float Werten empfangen. Dabei wird zudem
ein Farb- und Tiefenpuffer, welche sich auf dem Heap befinden, zur Verfiigung ge-
stellt, in denen pro Pixel vier Farbkanale beziehungsweise ein Tiefenwert hinterlegt
werden konnen. Bevor die Eckpunkte unterschiedliche Transformationen durchlau-
fen, werden sie in ein struct vertex_fp umgewandelt. Dieses besitzt als Attribute
die vier Koordinaten und ein struct color (Farbe) sowie ein struct vector (Nor-
malenvektor), sodass ein Eckpunkt mitsamt aller seiner Informationen auf diese Art
hinterlegt werden kann.

Der Kopiervorgang ist notig, da auf den Eckpunkten verschiedene Transformatio-
nen vorgenommen werden, welche mit diesen Datentypen arbeiten. Dazu gehoren
sowohl die auf den Eckpunkten operierenden Model-, View-, Perspective- und View-
port-Transformationen, als auch die Transformationen fiir die Beleuchtung.

Die Verwendung von Speicherplatz auf dem Heap muss minimiert werden, da die da-
mit zusammenhingenden Allokieroperationen langsam sind [AS96]. Ubergeben wer-
den an alle Methoden ausschliefSlich Zeiger, da das in der Programmiersprache C ver-
wendete Call-by-Value ansonsten bei jedem Aufruf eine Kopie erzeugt, was zu Lasten
der Effizienz fallt. Vor dieser Optimierung war die Ausfiihrungszeit deutlich erhoht,
konnte aber durch diese simple Anderung verringert werden.

Eine Ausnahme bildet dabei die Ubergabe von baryzentrischen Koordinaten an eine
Methode. Hierbei werden die drei Werte einzeln iibergeben, da sich dies als schneller
herausstellte, als die Ubergabe eines Zeigers auf ein Feld mit drei Werten. Ursache
dafiir ist, dass die mehrfache Dereferenzierung die Ausfithrungszeit erhoht.

16

3.2. Berechnung baryzentrischer Koordinaten

3.2. Berechnung baryzentrischer Koordinaten

Baryzentrische Koordinaten sind im Falle eines Dreiecks drei Werte A\g, A1 und A,. Die
Koordinaten werden genutzt, um mithilfe der Eckpunkte V4, Vi und V5 des Dreiecks
einen beliebigen Punkt P in der Form P = A\Vy + A\1V; + AoV, auf der Dreiecksfla-
che darstellen zu konnen. Im Wesentlichen besteht der Aufwand der Uberpriifung,
ob ein Pixel zum Zeichnen eines Dreiecks eingefarbt werden muss darin, die baryzen-
trischen Koordinaten fiir dessen Mittelpunkt zu berechnen. Ist mindestens eine der
Koordinaten negativ, liegt der Pixelmittelpunkt aulerhalb des Dreiecks.

Selbst wenn die Uberpriifung nicht nétig wére, soll der Aufwand zur Berechnung
baryzentrischer Koordinaten moglichst gering sein, da diese zur Tiefen-, Farb- und
Normaleninterpolation dienen. Zur Berechnung der Koordinaten fiir einen Punkt P
werden die Teilflichen betrachtet, die durch Verbinden dieses Punktes mit den drei
Eckpunkten entstehen. Der Anteil einer Teilfliche an der Gesamtfliche des Dreiecks
entspricht der baryzentrischen Koordinate des Punktes P fiir den gegeniiber der Teil-
flache liegenden Eckpunkt. Daraus folgt die Darstellung des Punktes in der Form

Ay, Ay, Ay,
P=—V % 2V 3.1
Ages or Ages L Ages ? ()

die in der folgenden Grafik veranschaulicht wird.

%
Vi

Vo

Abbildung 3.1.: Teilflichen zur Berechnung baryzentrischer Koordinaten

Das doppelte des Flicheninhalts Ay, jedes Teildreiecks ergibt sich aus dem Betrag
des Kreuzproduktes von zwei seiner Kanten. Der Wert ist negativ, falls P aufler-
halb des Gesamtdreiecks liegt. Zum Beispiel gilt fiir das Teildreieck gegeniiber des
Eckpunktes Vj

—_— —>
Ay, = [[ViP x V1 Va]
= (Vo = V1,)(Pe = V1,) = (Va, = V1,) (B = V1,)
= (Vi, = Va,) Po + (Va, = Vi) Py + (Vi Va, = Vi, Va,)
=Ay- P+ By-Py+Cy = Ay (P, Py)

Die Idee dieser Optimierung stammt aus [Giel3]. Die Eckpunkte V; sind fiir jedes
Dreieck konstant, sodass eine lineare Funktion in P entsteht. Der Algorithmus ar-

17

3. Optimierung

beitet jeden potentiell zum Dreieck gehérenden Pixel ab und vollzieht daher inner-
halb jeder Zeile Schritte in xz-Richtung nach rechts beziehungsweise beim Wechsel
der Zeile in y-Richtung nach oben. Zum Beispiel wird die Teilflache Ay, des rechten
Nachbarn eines Pixels P dabei durch Ay, (P, + 1, P,) berechnet, analog dazu die des
oberen Nachbarn mittels Ay, (P, P, +1). Auf Grund der Linearitét der Funktion gilt
Ay, (P, +1,P)) - Ay,(Py, P)) = A; beziehungsweise Ay, (P,, P, +1) - Ay, (P, P)) = B;,
was darin resultiert, dass die baryzentrischen Koordinaten inkrementell berechnet
werden kénnen.

Dazu werden zunéchst alle drei Teilflichen des ersten zu priifenden Pixels mittels
Ay, (P,, P,) berechnet. Sollen als néchstes die Koordinaten des rechten Nachbarn er-
mittelt werden, so werden alle Teilflichen Ay, um den Wert A; erhoht, wihrend analog
dazu die des oberen Nachbarn sich durch Erhéhung jeder Teilfliche um B; ergeben.

Bislang wird die Berechnung der Dreiecksfliche A, und der Teilflichen Ay, bei der
Berechnung der Koordinaten jedes Pixels erneut geméafl Formel 3.1 durchgefiihrt. Die
Flache Ages (das doppelte der Gesamtflache des Dreiecks), muss nur ein Mal berechnet
und hinterlegt werden und resultiert ebenfalls aus dem Kreuzprodukt zweier Kanten
des Dreiecks. Durch diese alternative Art baryzentrische Koordinaten zu berechnen
sind nun fir die Berechnung aller Teilflichen zu einem Pixel nur drei Additionen
notwendig, anstatt wie vorher fiinf Additionen und zwei Multiplikationen.

3.3. Rasterisierung

3.3.1. Optimierung des vorhandenen Algorithmus
3.3.1.1. Friihzeitiges Clipping

Ein frithes Clipping (also das Verwerfen nicht in den darzustellenden Bereich fallender
Teile) minimiert die Anzahl der Operationen mit Koordinaten, die am Ende verworfen
werden. Das umgebende Rechteck aus Abschnitt 2.2 wird daher nicht nur von den
maximalen bzw. minimalen z- und y-Werten des Dreicks limitiert, sondern auch von
der maximalen Breite und Hohe des Darstellungsbereiches. So muss nicht bei jedem
Pixel gepriift werden, ob seine Koordinaten auflerhalb dieses Bereiches liegen, sondern
das Kriterium wird schon bei der Festlegung der Bounding-Box erfiillt, welche nur
pro Dreieck berechnet werden muss.

Zusatzlich wird vor der Interpolation der Farbe inklusive Beleuchtungsberechnung
im Tiefenpuffer gepriift, ob an diesem Pixelmittelpunkt ein Wert hinterlegt ist, der zu
einem Objekt gehort, das sich dort naher am Betrachter befindet. Da der Pixel ohnehin
im Falle einer positiven Priifung seinen Farbwert behilt, miissen keine Farb- und
Beleuchtungsberechnungen stattfinden. Ein Pixel, welcher nicht eingeférbt wird, weil
dort ein naheres Objekt Tiefenpuffer hinterlegt ist, hat also lediglich die Interpolation
der Tiefe zu Folge.

Allgemein ist es vorteilhaft, so viele Operationen wie moglich vor dem Durchlau-
fen der Schleife zu vollziehen. Dazu gehort die Berechnung des Flacheninhalts des
Dreiecks, durch die die baryzentrischen Koordinaten zur Skalierung auf den Bereich

18

3.3. Rasterisierung

[0,1] geteilt werden mussen. Der Divisor muss nicht fiir jeden Pixel erneut berechnet
werden.

3.3.1.2. Abbruchbedingung innerhalb jeder Zeile

Der Algorithmus mit begrenzendem Viereck aus Abschnitt 2.2 arbeitet jede Zeile von
links nach rechts ab und farbt sie entsprechend ein. Innerhalb jeder Zeile ist bekannt,
ob in dieser schon ein Pixel eingefidrbt wurde, oder nicht. Falls ja, ist der aktuelle Ort
des Rasterisierungsvorgangs entweder im Dreieck oder rechts davon, falls nicht, ist
er links davon. Ist ersteres der Fall und der Algorithmus befindet sich aktuell nicht
auf einem einzufarbenden Pixel, kann mit der nichsten Zeile fortgefahren werden, da
ohnehin kein einzufarbender Pixel mehr in dieser Zeile existieren kann. Dadurch wird
das Rechteck rechtsseitig ausgefranst. In der folgenden Abbildung sind die eingeféirb-
ten Pixel mit einem grauen Kreuz versehen. Die mit einem roten Kreuz markierten
Pixel sind jene, in denen mit der néchsten Zeile fortgefahren werden kann.

B

I

| TN
N
Ll |+
R +
]t

+ |+ LA

i

A

Abbildung 3.2.: Der zeilenweise frithere Abbruch bei der Rasterisierung

Mit Hilfe dieser Optimierung wird im Durchschnitt bei jedem Dreieck ungefahr die
Hélfte der félschlich gepriiften Pixel gespart, in diesem Fall sogar mehr. Insgesamt
werden fiir halb so viele Pixel, wie sich im Dreieck befinden, die baryzentrischen
Koordinaten berechnet nur um festzustellen, dass sie sich nicht im Dreieck befinden.

3.3.1.3. Rasterisierung von links und rechts

Der Algorithmus arbeitet in vertikaler Richtung von unten nach oben und in horizon-
taler von links nach rechts. In jeder Zeile wird die Abbruchbedingung gepriift, die im
vorherigen Abschnitt erldutert wurde, und kann damit fiir eine Ersparnis sorgen. Im
Worst-Case miissen aber dennoch die baryzentrischen Koordinaten fiir alle Pixelmit-
telpunkte des umgebenden Rechtecks berechnet werden, wodurch weitere Rechenzeit

19

3. Optimierung

verbraucht wird. Einen solchen Worst-Case bildet jedes Dreieck, das eine Kante hat,
die den rechten Rand des Rechtecks wie beispielsweise in Abbildung 3.3 zeigt, ganzlich
abdeckt.

+++++++;jf
+++++/&/++‘
+++%++++.
?4++++++‘
F{a |+]+ +]+]
S EE
R ERSE
+++++++\<§1

Abbildung 3.3.: Beispielhafter Worst-Case fiir die Rasterisierung beziiglich der Bedin-
gung aus 3.3.1.2

In diesem Fall konnen keine Pixel durch die Optimierung aus Abschnitt 3.3.1.2
eingespart werden, weil die zeilenweise Rasterisierung nach Betreten des Dreiecks
selbiges nicht mehr verldsst, und dementsprechend keine Pixel iibersprungen werden
konnen.

Wiirde die Rasterisierung von rechts nach links verlaufen, kénnten alle Pixel nach
dem ersten falschlich gepriiften pro Zeile eingespart werden, also eine hohe Ersparnis
erzielt werden und der Worst-Case wiirde zum Best-Case umgewandelt werden, da
eine hohere Ersparnis nicht moglich ist. Die Funktionsweise ist dabei analog zu der,
wenn von links nach rechts rasterisiert wird. Das Rechteck kann linksseitig ausgefranst
werden, weil sich nach dem Verlassen des Dreiecks keine Pixel mit ihren Mittelpunkten
innerhalb des Dreiecks befinden konnen.

Nun fehlt ein Kriterium zur Entscheidung, ob das Dreieck von links nach rechts oder
umgekehrt rasterisiert werden soll. Es bietet sich an, die z-Koordinate des Schwer-
punktes des Dreiecks zu bestimmen. Je nach dem an welcher vertikalen Kante des
Rechtecks bzw. wo im Intervall [%,,in, Tmaz] sich der Wert befindet, wird von die-
ser Seite beginnend rasterisiert, da erwartet wird, dass sich dort der Grofiteil aller
zum Dreieck gehorigen Pixel befindet. In Abbildung 3.3 hatte die xz-Koordinate des
Schwerpunktes S bei einem Rechteck der Breite Eins den Wert %, welcher naher an
der rechten Kante x,,,, = 1 liegt. Somit wird das Dreieck beginnend von rechts nach
links rasterisiert.

Durch diese Methode kann erwartet werden, dass nur noch 25% aller Pixel, die
innerhalb des Rechtecks negativ auf Zugehorigkeit des Dreiecks getestet wiirden tiber-
haupt noch gepriift werden.

20

3.3. Rasterisierung

3.3.2. Window Search Rasterisierung
3.3.2.1. Kiritik an der Rasterisierung mit umgebenden Rechteck

Der Ansatz der Rasterisierung aus Abschnitt 2.2 ist zwar simpel und garantiert
die vollstandige Einbeziehung aller Pixel innerhalb des Dreiecks, jedoch involviert
er auch die Abtastung von Pixelmittelpunkten, welche nicht zum Dreieck gehéren
und dementsprechend nicht gezeichnet werden. Fiir solche miissen die baryzentri-
schen Koordinaten berechnet werden, um in Folge dessen zu priifen, ob sie das gleiche
Vorzeichen haben. Nur in diesem Fall liegen sie wirklich innerhalb des Dreiecks und
es kommt zur Einfarbung des Pixels. In der folgenden Abbildung 3.4 sind die Pixel-
mittelpunkte, die abgetastet werden, ohne sie einzufdrben, mit einem roten Kreuz
gekennzeichnet. Besonders unter diesen leidet die Performance unnotig, da haufig
viele Dreiecke gezeichnet werden miissen und die Vielzahl an negativen Priifungen
Zeit in Anspruch nimmt.

B
+ N\]+
+ﬁ++
A+ N
/4++++
Lo+ [+]+
L+ el
A

Abbildung 3.4.: Abtastpunkte der Rasterisierung mit umgebenden Viereck

Insgesamt werden 28 Pixel gepriift, sodass von allen die baryzentrischen Koordi-
naten berechnet werden miissen. Besonders auffillig ist die obere Reihe, die iiber die
ganze Breite gepriift wird, da der Algorithmus innerhalb dieser nie einen Pixemittel-
punkt im Dreiecks findet und dadurch nicht frithzeitig abbrechen kann, weil ihm nie
bekannt ist, dass er die Flache des Dreiecks schon tiberschritten hat. Ungefahr 50% al-
ler Uberpriifungen fallen negativ aus und resultieren nicht in einem Einfirbevorgang.
Wiinschenswert wére ein Algorithmus, der keine negativen Priifungen vorweisen kann,
sodass nicht nur die inkrementelle Berechnung baryzentrischer Koordinaten, sondern
allgemein im Quelltext die gesamte Uberpriifung auf das gleiche Vorzeichen jener Ko-
ordinaten, die in der bisherigen Variante fiir jeden Pixel anféllt, eingespart werden
kann. Durch die Kanten des Dreiecks kann jedoch mathematisch bestimmt werden,
welche Pixel innerhalb und auflerhalb liegen.

Weiterhin spart die Optimierung aus Abschnitt 3.3.1.2 insgesamt nur die Uberprii-
fung von zwei Pixeln im Vergleich zum tiblichen umgebenden Viereck ein. Fiir kleine

21

3. Optimierung

Dreiecke, wie sie bei fein detaillierten, dreidimensionalen Strukturen tiblich sind, ist
die Einsparung durch die Optimierung allgemein nur gering. Grund dafir ist, dass
pro Zeile auch immer hinter dem Dreieck ein Pixel gepriift wird, der nicht im Drei-
eck liegt, um zu registrieren, dass die Rasterisierung dieser Zeile das Dreieck wieder
verlassen hat. Die Optimierung merkt nicht, dass sie sich am letzten Pixel innerhalb
des Dreiecks befindet, sondern erst, wenn sie sich am ersten Pixel aulerhalb befindet.
Dadurch endet der Algorithmus beim Durchlaufen einer Zeile hdufig bei dem Pixel,
der ohnehin auch in der Bounding Box der letzte Pixel gewesen ware, wie es in Zeile
drei und vier der Fall ist. Pro Zeile konnen also durch frithzeitiges Verlassen haufig gar
keine oder wenige Pixel eingespart werden. Wiisste der Algorithmus, dass er sich am
letzten Pixel innerhalb des Dreiecks befindet und nun die Zeile wechseln kann nicht
erst dann, wenn er bereits am ersten auflerhalb ist, wire die dadurch erzielte Ein-
sparung drei Mal so grof3 fiir das Dreieck in der obigen Abbildung. Abgesehen davon
werden alle Pixel auflerhalb des Dreiecks auf der Seite des Startes des Zeilendurch-
laufes negativ gepriift und dies nimmt Rechenzeit in Anspruch. Worst-Case beziiglich
dieser Optimierung ist ein symmetrisches Dreieck, da dann die Einsparung von links
und rechts gleich ist und minimal wird.

] T
R e

e e s Sy
ST |+

L |+ +

N N I e e I

Abbildung 3.5.: Worst-Case fiir die Optimierung des Zeilendurchlaufes fiir beide Rich-
tungen

Die Entscheidung, ob von links oder rechts rasterisiert werden soll, brachte fiir di-
verse Testbeispiele keinen Performancegewinn, sondern tendierte eher zum Verlust.
Pro Dreieck ist die Berechnung der x-Koordinate des Schwerpunktes, bestehend aus
der Mittelung der z-Koordinaten aller Eckpunkte, und die Abfrage der Differenz zu
den beiden dufleren x-Werten notig. Die damit verbundene Einsparung ist aber aus
den oben genannten Griinden nur gering, vor allem, weil die Dreiecke sehr klein sind.
Héufig ist sogar die Einsparung bei einer Rasterisierung der Zeilen von links oder
rechts identisch oder weicht nur minimal ab, sodass die Berechnung unnétigen Zu-
satzaufwand darstellt, wodurch der Zusatzaufwand zur Ermittlung der Richtung des
Durchlaufs mehr Zeit in Anspruch nimmt, als eingespart wird.

22

3.3. Rasterisierung

3.3.2.2. Ziel und Funktionsweise der ,,Window Search Rasterisierung*

Die Rasterisierung soll nun durch eine performantere ersetzt werden, deren grundle-
gende Idee aus [Hen+11] stammt. In diesem wird sie als ,Window Search Bounding
Box“ aufgefithrt. Wie im vorausgegangenen Abschnitt beschrieben, sollen ausschlief3-
lich die Pixel innerhalb eines Dreiecks abgefragt werden. In Abbildung 3.5 entfallen
also beispielsweise alle roten Kreuze.

Das Dreieck wird in dieser Implementierung, dhnlich wie bei der Implementierung
mit dem Bresenham-Algorithmus aus [Rit19], von unten nach oben zeilenweise rasteri-
siert. Die Aufteilung des Dreiecks in zwei Hélften inklusive der Definition eines vierten
Eckpunktes auf Hohe des mittleren Eckpunktes auf dessen gegeniiberliegender Kante
entfallt in dieser Implementierung, da es unnotigen Aufwand darstellt. Dies bildet
sowohl einen Speicher als auch einen Geschwindigkeitsvorteil. Es soll eine Schleife
jede Reihe von Pixeln angefangen von der Hohe des tiefsten Eckpunktes endend bei
der Hohe des hochsten durchlaufen. In jeder Iteration werden fiir die aktuelle, ganz-
zahlige Pixelreihe die z-Koordinaten fiir die linke und die rechte Kante ermittelt,
zwischen denen sich alle einzufarbenden Pixel befinden miissen. Anschlieffend iteriert
eine Schleife angefangen vom kleineren endend beim gréfleren z-Wert auf dieser Hohe,
um alle in dieser Zeile liegenden und zum Dreieck gehorigen Pixel einzufarben. Dabei
werden die baryzentrischen Koordinaten fiir den Pixel ganz links tiber die Teilfla-
cheninhalte ermittelt [Rit19], die restlichen Koordinaten in dieser Zeile ergeben sich
inkrementell. Jede Zeile wird in diesem Algorithmus auf ihre Schnittpunkte mit dem
zu rasterisierenden Dreieck untersucht.

Zur Realisierung miissen die drei Eckpunkte vy, v und v3 zunachst der y-Koordinate
nach aufsteigend sortiert werden, aber bleiben zusétzlich in der urspriinglichen Rei-
henfolge hinterlegt. Beim Backface Culling werden namlich die dem Beobachter nicht
zugewandten Seiten nicht gezeichnet; alle Koordinaten haben in dem Fall ein nega-
tives Vorzeichen, was nur der Fall ist, wenn die Eckpunkte der Berechnung in der
gegebenen Reihenfolge tibergeben werden. Auflerdem sollen gegen den Uhrzeigesinn
definierte Dreiecke nicht gezeichnet werden, daher ist die urspriingliche Reihenfolge
wichtig.

Sind nun die Eckpunkte beziiglich ihrer y-Koordinate aufsteigend sortiert, ergibt
sich die untere Grenze der Schleife tiber die Zeilen durch y,,;, = [Uly] und die obere
durch Ypae = |vs, |. Auf den Héhen des unteren bzw. oberen Eckpunktes kann nur in
der Reihe der Pixel dariiber bzw. darunter ein Pixel existieren, der zu dem Dreieck
gehort. Nun muss im Wesentlichen fir jede ganzzahlige Hohe y; € {Ymin, s Ymaz t
die Limitierung links und rechts auf dieser Hohe als Intervall z,,;,(y;) und Z,0.(v;)
ermittelt werden, um fiir jede Zeile die einzufarbenden Pixel innerhalb dieses Intervalls
zu ermitteln. Um den Algorithmus zu veranschaulichen, wird er anhand des Beispiels
aus Abbildung 3.5 teilweise vorgefiihrt.

23

3. Optimierung

B

AR

+ |+
/4+++
e+ |+ |+
\\P\+4

Abbildung 3.6.: Abtastpunkte der Window Search Rasterisierung

Auf den ersten Blick ist ersichtlich, dass nur die tatsdchlich zum Dreieck gehoren-
den Pixel abgetastet werden, was der gewiinschten Anforderung entspricht. Dadurch
entsteht haufig eine enorme Einsparung, die grofler ist, als der zusatzliche Overhead
der im Zuge der Berechnung der Schnittpunkte der Kanten mit den Hohen féllig wird.

A hat in Abbildung 3.6 die Koordinaten (6,5/0,5), B(3,5/6,5) und C(1,5/2,1). Zur
Ermittlung der begrenzenden z-Werte werden die beiden Kanten, die aus A heraus-
gehen, als lineare Funktionen interpretiert. Eine verlauft bis zum obersten Eckpunkt
B, die andere bis zum mittleren Eckpunkt C'. Das Dreieck zeigt nach links, da C'

links von der Kante zwischen A und B liegt. Demnach bildet die Kante A—é die linke

Begrenzung fiir die z-Werte und die Kante AB die rechte. Bei einem nach rechts
zeigenden Dreieck gilt umgekehrtes und in der folgenden Erklédrung miissen x,,,, und
Tmin getauscht werden.

Die unterste Linie, die durchlaufen wird, besitzt die Hohe Eins. In der Schleife tiber
die verschiedenen Hohen kann nun anhand der Information, ob sich die aktuelle Hohe
unter oder iiber der y-Koordinate des mittleren Pixels beﬁndet_,> festgelegt werden, ob

fiir die linke Begrenzung die als Gerade interpretierte Kante AC' oder C'B verwendet

werden muss. Die Steigung von AC beziiglich y ergibt sich durch mg. = 4=z die

Ay=Cy”
von AE durch my = ﬁz:gz.

Fiir die linke begrenzende Kante unterhalb der Hohe des mittleren Eckpunktes C'
gilt nun allgemein: @i (yi) = [Asz + Mae - (yi — 4,)], da sie als lineare Funktion mit
A, als y-Achsenabschnitt interpretiert wird und von dort an ein Schritt der Lange
y; — A, gemacht wird, um die aktuelle Hohe zu erreichen. Die obere Gaufklammer
kann hier verwendet werden, da dies der erste in Frage kommende z-Wert ist, der zu
dem Dreieck gehort. Fiir den Fall y; = 1 aus der Abbildung hat z,,;, den Wert 5 und
entspricht dem ersten Pixel von links auf der Hohe 1, der eingefarbt werden muss. Die
Formel fir z,,..(y;) ergibt sich analog durch ersetzen von mg. durch my, und dem
Tausch der oberen mit der unteren Gaulklammer. So gelangt der Algorithmus zu dem
Ergebnis x,,., = 6, welcher den letzten zum Dreieck gehorenden Pixel auf der Hohe
1 darstellt. Nach dem Einfarben aller Pixel zwischen x,,;, und x,,,, (inklusive inkre-

24

3.3. Rasterisierung

menteller Berechnung baryzentrischer Koordinaten und der daraus folgenden Farb-
und Beleuchtungsberechnung) auf der Héhe wird mit der nichsten Zeile fortgefahren.
In dieser arbeitet der Algorithmus analog, da die Hohe y; = 2 < C), ist, weswegen die

Kante AC die linke Limitierung bildet.

In der néachsten Zeile éndert sich lediglich die Vorschrift zur Bestimmung von ,,,,,
weil die aktuelle Zeile der Rasterisierung dort oberhalb des mittleren Eckpunktes liegt.
Deswegen wechselt m,. zu my (Steigung der Kante C’§) und A nun zu C, da der
Ursprung der Gerade im Punkt C' statt wie vorher A definiert wird. Die Ermittlung
der linken Grenzen lduft nun analog mit der Formel fiir 2,1, (v;) = [Cp +mey- (yi—Cy) .

25

4. Parallelisierung

Die Laufzeit des Software-Renderers soll moglichst gering sein. Insbesondere fiir Ani-
mationen ist sie relevant, weil jene mit einer moglichst hohen Bildrate dargestellt
werden miissen, um eine auf den Benutzer fliissig wirkende Bewegung zu erschaf-
fen. Eine Laufzeit wie in der Variante mit OpenGL und Hardwarebeschleunigung ist
nahezu unmoglich, da die Hardware einer Grafikkarte auf Visualisierungsprobleme
spezifiziert ist, wahrend die CPU allgemeiner fiir diverse Anwendungsgebiete der Da-
tenverarbeitung gedacht ist. Dabei liegt der Vorteil der GPU-Hardware insbesondere
in der Vielzahl von Kernen, die Transformationen und Visualisierungsoperationen,
wie beispielsweise die Rasterisierung von Dreiecken, in hohem Mafle parallel abferti-
gen konnen.

Nichtsdestotrotz hat die Mehrheit moderner CPUs mehrere Kerne, sodass die Rech-
nungen blockweise parallel vollzogen werden kénnen. Offenbar muss die Parallelisie-
rung schematisch anders implementiert werden, als bei der hardwarebeschleunigten
Variante, da sie dort darauf ausgelegt ist, auf einem System mit sehr vielen Kernen
zu arbeiten. Die Skalierung dieser Art der Parallelisierung auf CPUs ist im Vergleich
zu GPUs suboptimal. Eine Reduzierung der Laufzeit soll daher durch andere Mecha-
nismen und Konzepte paralleler Programmierung realisiert werden, die im folgenden
erlautert und verglichen werden.

Wie in Abschnitt 2.3 beschrieben, werden pro Bild 0 bis n Dreiecksgitter gezeich-
net. Da die Anzahl an Dreiecksgittern theoretisch beliebig variieren kann, bietet sich
eine Parallelisierung dieser nicht an, weil die Anzahl verfiighbarer Kerne konstant ist,
die Anzahl an Dreiecksgittern jedoch héufig geringer ist als die Anzahl der Kerne.
So werden im folgenden zwei mogliche Varianten fiir Aufteilungen vorgestellt und
diskutiert.

4.1. Paralleles Zeichnen von Dreiecksgitterteilen

Die Grundidee der ersten Variante ist Anzahl der Dreiecke jedes Dreiecksgitters in
gleich grofe Teile zu unterteilen und den Threads jeweils einen solchen Teil zuzuwei-
sen, der von ihm abgearbeitet werden soll. Somit bildet die Variante eine Aufteilung
hinsichtlich des darzustellenden Inhaltes.

Die Koordinaten der Eckpunkte eines Dreiecksgitters sind in einem Feld Eckpunkte
hinterlegt, jeder Eintrag enthalt einen Eckpunkt mit dessen vier Koordinaten, so-
wie dessen Farbe und Normale [Rit19]. Fiir ein Dreiecksgitter kann ein sogenannter
Indexpuffer der Lange [; hinterlegt sein, welcher aus einem Feld mit Indizes besteht,
deren Elemente in Blocke der Grofle drei unterteilt werden kénnen und als solche

26

4.1. Paralleles Zeichnen von Dreiecksgitterteilen

zusammen ein Dreieck durch Referenzierung des Feldes der Eckpunkte bilden.

Eckpunkte | Vo |\ Vi | Vo | V3 | Vi | V5| V6| V7| VR

BRI

Indexpuffer| 0 | 1 | 2|3 |2 | 1|7 |58

= Dreiecke AV VI Va, AV3VLV, AVZVEVR

Abbildung 4.1.: Visualisierung eines Indexpuffers

Ist kein Indexpuffer definiert, werden die Eckpunkte in ihrer Reihenfolge durchlau-
fen. Dabei sind jeweils drei Eintrége des Feldes Eckpunkte, das die Lénge [, besitzt,
zusammen als ein Dreieck zu interpretieren. Abhédngig davon, ob ein Indexpuffer exis-
tiert, sind demnach wenn er definiert ist Ay = % und sonst Ay = % Dreiecke zur
Darstellung eines Dreiecksgitters von Noten. Die Anzahl der Dreiecke eines Dreiecks-
gitters A, kann gleichméflig auf die Threads aufgeteilt werden, indem sie durch die
Anzahl der Threads n,; geteilt werden. Jeder Thread {ibernimmt dann seinen Teil des

Dreiecksgitters. Sie werden also nacheinander, aber jeweils in sich parallel gezeichnet.

4.1.1. Mutex-Lock des kritischen Bereiches

Wiéhrend der parallelen Abarbeitung der Arbeitspakete, die aus einer Teilmenge al-
ler Dreiecke eines Dreiecksgitters bestehen, greifen die Threads alle auf dieselben
Farb- und Tiefenpuffer zu, falls ohne wesentliche Anderung die Parallelisierung in das
vorhandene Programm eingefiigt wird. Dies ist sowohl beim Tiefen- als auch beim
Farbpuffer der Fall. Uber die Positionierung der Dreiecke im Zusammenhang mit ih-
rer Threadzugehorigkeit ist nichts bekannt, sie konnen sich an beliebigen Stellen iiber
die gesamten Farbpuffer verteilt befinden. Besonders relevant ist dabei der Fakt, dass
mehrere Threads unter Umstanden auf den exakt selben Speicherbereich zugreifen,
falls zwei der Threads jeweils ein Dreieck rasterisieren, welches zur Einfarbung dessel-
ben Pixels fithrt. Die Speicherbereiche der Farbpuffer und des Tiefenpuffers miissen
also beim Eintritt eines Threads fiir alle anderen gesperrt werden, sonst konnte es zu
einer Race Conditon kommen.

Beispielsweise fragt ein Thread 7 den Tiefenpuffer an einer Stelle (z,y) ab und
realisiert, dass das Dreieck, welches gerade durch ihn rasterisiert wird, naher am Be-
obachter ist (z; = 0,5), als das bisher an dieser Stelle hinterlegte (z,, = 0,6). Somit
muss ein Einfarbevorgang stattfinden. Bevor der Pixel eingefarbt wird, setzt ein an-
derer Thread T3 ein, der ebenfalls an der Stelle (x,y) eine Einfirbung vornehmen
will. Dieses Dreieck besitzt dort den Tiefenwert z5 = 0,4 und ist somit das zum Be-
trachter néchstgelegene, deswegen wird es auch eingefarbt. Nun setzt die Abarbeitung
des Threads T; erneut ein; dieser hat allerdings bereits die Abfrage des Tiefenpuffers

27

4. Parallelisierung

iberwunden und iberschreibt aus diesem Grund den von Thread 75 hinterlegten
Farbwert, welcher eigentlich der fir diesen Pixel korrekte gewesen wire. In diesem
und dhnlichen Fillen kann die Korrektheit der Darstellung nicht mehr gewéhrleistet
werden.

Die erste intuitive Idee ist es, den Bereich der Abfrage des Tiefenpuffers und den
Einfarbevorgang durch ein Mutex-Lock zu schiitzen, sodass nur ein Thread gleichzei-
tig dort eintreten darf. Jedoch ist in diesem Fall nicht nur der Overhead durch das
allzuhdufige Sperren und Entsperren des Mutex-Locks sehr hoch, sondern die Paral-
lelisierung an sich durch das stiandige Warten gestort, sodass es in der tatsdchlichen
Ausfiihrung der sequentiellen Abarbeitung nahe kommt. In diversen Beispielen war
die Laufzeit dieser Implementierung deutlich héher als die der Urspriinglichen ohne
jegliche Parallelitét.

4.1.2. Mehrere Farb- und Tiefenpuffer mit anschlieBendem
Mischen

(a) Dreiecksgitterteile im Farbpuffer (b) Dreiecksgitterteile im Farbpuffer
des ersten Threads des zweiten Threads

(c) Dreiecksgitterteile im Farbpuffer (d) Dreiecksgitterteile im Farbpuffer
des dritten Threads des vierten Threads

Abbildung 4.2.: Darstellung der Dreiecksgitterteile in den Farbpuffern der Threads
28

4.1. Paralleles Zeichnen von Dreiecksgitterteilen

Besonders das Warten auf das Mutex-Lock bremst die Ausfiihrungsgeschwindigkeit
enorm. Praktisch wére es also, wenn jeder Thread ohne Mutex seinen Teilblock an
Dreiecken (d.h. D; = ﬁ—j) zeichnen kann und dabei keine Gefahr von Race Conditions
besteht. Aus diesem Grund werden so viele Farbpuffer und Tiefenpuffer angelegt,
wie Threads vorhanden sind. Somit hat jeder Thread seinen eigenen Speicherbereich,
in den sein Teil eines Gitters gezeichnet werden kann. Sind mehrere Dreiecksgitter
pro Bild vorhanden, zeichnet jeder Thread seinen Anteil an jedem dieser in den zu
ihm gehorigen Farbpuffer und hinterlegt dementsprechend die Tiefenwerte in seinem
Tiefenpuffer. Ergebnis dieses Vorgangs sind mehrere Farb- und Tiefenpuffer, deren
Anzahl jeweils der Anzahl an verwendeten Threads entspricht. In diesen Farbpuffern
ist pro Dreiecksgitter ein Anteil hinterlegt.

Diese Farbpuffer miissen nun mit Hilfe der vorhandenen Tiefenpuffer zusammenge-
fiigt werden, sodass sie im Verbund das urspriinglich gewtinschte Bild ergeben. Dazu
wird iiber jeden Pixel des Farbpuffers iteriert und das Minimum iiber alle an die-
ser Stelle in den verschiedenen Tiefenpuffern hinterlegten Tiefenwerte gesucht. Der
zu dem Tiefenwert im entsprechenden Farbpuffer hinterlegte Wert bildet dann den
Farbwert des Ergebnisses an dieser Stelle. Bildlich gesehen werden die Farbpuffer ge-
mischt, indem an jeder Stelle die Tiefenwerte aufsteigend sortiert werden und die
Farbpuffer dort analog angeordnet werden. Das Endergebnis besteht dann aus dem
Zusammenschluss aller Pixel, die sich am Ende ganz vorne befinden.

Diese Operation kann auf simple Art und Weise parallelisiert werden. Das Bild wird
in so viele Streifen unterteilt wie Threads verfiigbar sind. Jeder Thread kiimmert sich
dann um einen Teilbereich, sodass niemals von zwei Threads auf dieselbe Adresse
zugegriffen werden kann und demzufolge auch keine Mutex-Locks oder dhnliche Me-
chanismen von Noten sind.

Diese Variante stellte sich als effizienter als die sequentielle Abarbeitung heraus,
obwohl zusatzlich die Operation des Zusammenfiigens anfallt. Der Speicherbedarf ist
enorm erhoht, da der von den Farb- und Tiefenpuffern benotigte Speicherplatz sich
um den Faktor n; vervielfacht.

4.1.3. Teile von Dreiecksgittern in Queues

4.1.3.1. Motivation

Die Implementierung auf die beschriebene Art und Weise impliziert diverse Nachteile.
Zum Beispiel miissen fiir jedes Dreiecksgitter die Threads neu erstellt und ihnen die
Aufgaben zugewiesen werden. Die Erstellung eines Threads ist zeitintensiv. Beson-
ders, wenn nur kleine Dreiecksgitter vorhanden sind lohnt sich die mehrfache Inita-
lisierung der Threads und die Aufteilung der Aufgaben kaum, da der Overhead zur
Erstellung zu grof3 ist. Allgemein fiihren viele Dreiecksgitter zur haufigen wiederhol-
ten Erstellung von Threads, welche aber prinzipiell immer nur die gleiche Aufgabe
verrichten, die im Zeichnen eines Teils des Dreiecksgitters besteht. Der Aufruf der
Methode pthread_join() zum Warten auf Fertigstellung der Aufgaben der Threads
ware sinnvoller vor Beendigung des gesamten Programmes und nicht nach jedem Drei-

29

4. Parallelisierung

ecksgitter, da erst ganz am Ende des Programmdurchlaufs den Threads mit Sicherheit
keine neue Aufgaben mehr zugeteilt werden miissen. Praktischer und zeitsparender
ware also die einmalige Erstellung von Threads beim Start des Programmes, die dann
immer wieder neue Arbeitspakete verschiedener Dreiecksgitter und Bilder zum Zeich-
nen iibergeben bekommen und sich um die Darstellung jener in dem dazugehorigen
Farbpuffer kiimmern. Sie sollen immer zur Verfiigung stehen und nach der Been-
digung der Abarbeitung eines zu einem Dreiecksgitter gehorigen Teilstiickes wieder
bereit sein, den néchsten Job entgegen nehmen zu kénnen.

Weiterhin muss die Abarbeitung nach dem Zeichnen jedes Dreiecksgitters bezie-
hungsweise dem Zeichnen von dessen Teilen auf die Fertigstellung von dessen lang-
samsten Teilstiickes warten, bevor das Zeichnen des nachsten oder, im Falle des letz-
ten Dreiecksgitters, der Mischvorgang beginnen kann. Dieser Nachteil ist jedoch eher
weniger relevant, da sich die Grole der Arbeitspakete auf Grund der gleichméafligen
Aufteilung pro Dreiecksgitter maximal um ein Dreieck unterscheiden.

Auflerdem werden in der Implementierung nach dem beschriebenen Schema neue
Threads erstellt und gestartet, um das Mischen der Farbpuffer zu realisieren. Hier
treten die gleichen Nachteile auf, wie eingangs in diesem Abschnitt beschrieben. Ziel
ist es, das Zeichnen der Dreiecksgitterteile und deren Mischvorgang fiir alle Bilder in
denselben Threads zu erledigen, die lediglich ein Mal pro Darstellungsvorgang erzeugt
werden und vor Terminierung des GR3 wieder geldscht werden.

4.1.3.2. Implementierung

Damit die Threads nur ein Mal pro Szene erstellt werden miissen, wird eine Queue
implementiert, die alle Jobs beinhaltet die die einmalig initialisierten Threads dann
bei Verfiigharkeit entgegennehmen. Dieses Prinzip ahnelt dem Producer-Consumer-
Problem. Die Grundidee ist dabei die folgende: Pro Thread wird eine Queue erstellt,
in der jedes Element die Informationen tiber den zu diesem Thread gehorigen Teil
eines Dreiecksgitters enthalt.

In einer Szene werden jeder der Queues also so viele Elemente hinzugefiigt, wie
Dreiecksgitter vorhanden sind, nur, dass jeder Eintrag nicht das gesamte Dreiecks-
gitter beinhaltet, sondern lediglich einen Teil. Die Aufteilung jedes Dreiecksgitters in
seine Teile iibernimmt der Main-Thread wahrend der Iteration, der sogleich die In-
formationen in die Queue einfiigt und damit die Verarbeitung anstoft. Jeder Thread
entnimmt dann seiner Queue die Elemente und zeichnet die daraus resultierenden
Dreiecksgitterteile in seinen Farbpuffer. Hat jeder Thread die Abarbeitung aller sei-
ner Jobs erledigt, beginnt der Mischvorgang, der ebenfalls parallel stattfindet. Jeder
Thread bekommt bei seiner Erstellung iibergeben, welchen Teil des Farbpuffers er
durchlaufen beziehungsweise mit den anderen vermischen soll. Ist auch der Mischvor-
gang beendet wird das Bild dargestellt. Die Threads sind dann wieder in der Lage,
die Teile der Dreiecksgitter eines moglichen neuen Bildes entgegenzunehmen. Eine
Ubersicht des gesamten Ablaufs ist in der Abbildung 4.3 visualisiert.

30

4.1. Paralleles Zeichnen von Dreiecksgitterteilen

Dreiecksgitter ¢

Dreiecksgitter i-1
letztes_gitter = 0

Dreiecksgitter 1
letztes_gitter =0

Dreiecksgitter i+1
letztes_gitter =0

Dreiecksgitter n
letztes_gitter = 0

letztes_gitter = 1

X

[

Dreiecksgitter i
Teil ¢

letztes_gitter = O

r

Dreiecksgitter 1
Teil 1
letztes_gitter =0

7

Dreiecksgitter 1
Teil 2
letztes_gitter =0

Threads

)

Dreiecksgitter i
Teil 3
letztes_gitter = 0

einreihen einreihen einreihen einreihen
A
Dreiecksgitter i-1 Dreiecksgitter i-1 Dreiecksginer i-l Dreiecksgitter i-1
Teil O Teil 1 Teil 2 Teil 3
Dreiecksgitter i-j Dreiecksgitter i-j Dreieck§giner i Dreiecksgitter i-j
Teil O Teil | Teil 2 Teil 3
entnehmen (—\ entnehmen(—\ entnehmen <€— entnehmen <€~
A A
Thread 1 Thread 2 Thread 3 Thread 4
Zeichnen des Nein Zeichnen des Nein Zeichnen des Nein Zeichnen des Nein
Dreiecksgitterteils in Dreiecksgitterteils in Dreiecksgitterteils in Dreiecksgitterteils in
Farb- Tiefen- Farb- Tiefen- Farb- Tiefen- Farb- Tiefen-
puffer | Puffer 1 puffer 2 puffer 2 puffer 3 puffer 3 puffer 4 || puffer 4
letztes_gittter? letztes_gittter?—— letztes_gittter? — letztes_gittter?——
Ja Ta Ja Ja
Warten, bis Warten, bis Warten, bis Warten, bis
alle Threads alle Threads alle Threads alle Threads
fertig sind fertig sind fertig sind fertig sind
Mischen der Farbpuffer Mischen der Farbpuffer Mischen der Farbpuffer Mischen der Farbpuffer
in diesem Bereich in diesem Bereich in diesem Bereich in diesem Bereich
Farbpuffer 1 Farbpuffer 1 Farbpuffer | Farbpuffer 1
>
> Fertige Grafik
in Farbpuffer 1
<

Abbildung 4.3.: Grober Ablauf der ersten Variante des parallelen Renderns fir n; = 4

31

1

2

20

4. Parallelisierung

Beim Start des Programmes werden die Threads mit pthread_create() initia-
lisiert. Dabei wird ihnen ein horizontaler Streifen, der einen Anteil von n% an der
Gesamthohe hat, in Form von Starthohe und Endhohe zugeordnet. Dieser dient spéter
als Basis des parallelen Mischvorganges. Ebenso wird fiir jeden Thread eine Queue er-
stellt, in die die Dreiecksgitterteile eingereiht werden. Der Methode pthread_create ()
wird als Parameter im Wesentlichen die folgende Methode iibergeben, die die Jobs
entgegennimmt.

while (teildreiecksgitter_info = queue_dequeue(queue)){
zeichne_teildreiecksgitter (teildreiecksgitter_ info);
if (teildreiecksgitter info.letztes gitter){
/* Letzte Teildreiecksgitter dieses Threads ? x/
threads_fertig 4= 1;
if (threads_fertig =— ANZAHL THREADS){
/* Alle Threads fertig mit Zeichnen? x/
pthread cond_ broadcast(&warte auf mischen);
telse{
pthread_cond_ wait(&warte__auf_ mischen, &lock);

}

mische puffer(thread.start y, thread.end y);

/* Mischen des Bildauschnittes x/
threads_fertig 4= 1;
if (threads_fertig = 2 x ANZAHL THREADS){
/* Alle Threads fertig mit Mischen x/
pthread cond_signal(&warte nach_mischen) ;
¥
¥

}

Abbildung 4.4.: Vereinfachte Abarbeitung fiir jeden Thread (zur Ubersichtlichkeit
sind Mutex-Locks nicht aufgefiihrt)

Jeder Thread blockiert dabei in der ersten Zeile, falls die Queue keine Elemente ent-
halt. Es wird in der Methode queue_dequeue () auf ein Condition-Signal gewartet,
wenn die Queue leer ist. Wahrend also n; Threads auf die Entgegennahme von Arbeit-
spaketen warten, fiillt der Main-Thread den Farbpuffer mit Hintergrundfarbe. Danach
iteriert er iiber alle Dreiecksgitter und teilt pro Iterationsschritt das aktuelle in gleich
grofle Teile ein, damit sie den verschiedenen Queues hinzugefiigt werden konnen. Fiir
jedes Dreiecksgitter werden dann einmal im Main-Thread die Transformationsmatri-
zen sowohl fir die Koordinaten selbst, als auch fiir die Normalen initialisiert und
miteinander multipliziert, um diesen Aufwand nicht in jedem Thread durchfiihren
zu missen. Dann wird einer von n; gleich groflien Teilen des Indexpuffers oder der
gegebenen Eckpunkte in die jeweils zu einem Thread gehorige Queue eingereiht.

32

4.1. Paralleles Zeichnen von Dreiecksgitterteilen

1 int letztes_ gitter;
2 while (dreiecksgitter) {
3 int anteil;
letztes_ gitter = dreiecksgitter —>next = NULL;
if (anzahl indizes != 0){
6 /* Indexbuffer definiert =/
7 anteil = anzahl indizes/ANZAHL THREADS;
s telse{
o /* Kein Indexbuffer definiert x*/
10 anteil = anzahl eckpunkte/ANZAHL THREADS;
11 }
12 for (thread idx = 0; thread idx < NUM THREADS; thread idx++){
13 queue__enqueue(queues [thread idx], malloc_arg(dreiecksgitter ,
14 matrizen , letztes_ gitter , thread idxxanteil ,
. (thread idx+1)*anteil));
6}
7 dreiecksgitter = dreiecksgitter —>next;

s }

1o pthread__cond_ wait(&warte_nach__mischen, &lock);

Abbildung 4.5.: Vereinfachte Einreihung der Teilaufgaben in die einzelnen zu den
Thread gehorigen Queues

Ubergeben wird das zu zeichnende Dreiecksgitter, die fiir die Transformation not-
wendigen Matrizen und der Start- und der Endindex im Indexpuffer bzw. Eckpunkt-
feld des zu zeichnenden Anteils. Der Wert letztes gitter gibt Auskunft dariiber,
ob es sich um das letzte Dreiecksgitter eines Bildes handelt. In diesem Fall kann
nédmlich nach der Beendigung aller Jobs mit letztes gitter = 1 der Prozess des Mi-
schens der Farbpuffer beginnen. Nach der Iteration iiber die Dreiecksgitter wartet der
Main-Thread mit der tatsdchlichen Darstellung des Bildes auf ein Signal der ande-
ren Threads, die ihm mitteilen, wenn sie sowohl das Zeichnen als auch das Mischen
erledigt haben.

Beim Kommando queue_enqueue () wird ein Condition-Signal an den zu der Queue
gehorigen Thread gesendet, der danach aufwacht und die queue_dequeue () Funktion
fortsetzt. Damit beginnt die Abarbeitung aus Abbildung 4.4, die das Zeichnen die-
ses Dreiecksgitterteils beinhaltet. Ist ein Thread mit dem Zeichnen fertig, bevor der
nachste Job eingereiht wird, wartet er auf ein Condition Signal, das heifit auf das
nachste Einreihen eines Jobs in der Bedingung der while-Schleife.

Ist ein Job abgearbeitet, der zum letzten Dreiecksgitter eines Bildes gehort, wird
eine Zahlvariable threads_fertig erhoht. Ein Thread, der einen Job aus der Queue
entnimmt und realisiert, dass dies der letzte zu dem Bild gehorige ist, kann war-
ten, falls die anderen Threads noch nicht fertig sind, also falls threads fertig < n;.
Gleicht der Wert dieser Variable allerdings der Anzahl an vorhandenen Threads, ha-

33

4. Parallelisierung

ben alle Threads ihre Dreiecksgitterteile gezeichnet und der Vorgang des Mischens
kann beginnen. Ein Flaschenhals ist hier unwahrscheinlich, da jeder Teil eines Drei-
ecksgitters gleich grof ist und damit jeder Thread einen gleich grofien Anteil der
Arbeit erledigt. Der Thread, der als letztes mit seiner Abarbeitung fertig wird, signa-
lisiert dies allen anderen bereits fertigen und auf ihn wartenden Threads mit dem
Befehl pthread_cond_broadcast(). Dieser Befehl weckt alle mit eine spezifizierte
Condition-Variable wartenden Threads auf, was in dem Fall allen Threads bis auf
den Main-Thread entspricht. Jeder der Threads mischt dann seinen festgelegten ho-
rizontalen Streifen des Bildes und sucht fiir jeden darin enthaltenen Pixel den zum
Betrachter am néchsten befindlichen, um dessen Farbwert in dem am Ende dargestell-
ten Farbpuffer zu hinterlegen. Dabei kann es auf Grund der Disjunktheit der Streifen
nicht zu Race-Conditions kommen. Jeder Thread, der seinen Teil fertig gemischt hat,
erhoht die Variable threads fertig erneut. Sind alle fertig mit dem Mischvorgang,
hat die Variable den Wert 2n;. In dem Fall erhélt der Main-Thread, der nach der
Einreihung aller Jobs auf die Fertigstellung der anderen Threads gewartet hat, ein
Signal. Dieser weifl nun, dass das gesamte Bild gezeichnet ist und der parallele Teil
der Abarbeitung ist beendet. Somit kann das Bild entweder einer weiteren Verar-
beitung unterzogen werden (z.B. Kantengldttung) oder dargestellt beziechungsweise
exportiert werden.

4.2. Zeilenweise Verteilung der Arbeit auf die Threads

Der zweite Ansatz verfolgt die Idee, nicht den darzustellenden Inhalt, sondern den
darzustellenden Bereich gleichméfig auf die Threads aufzuteilen. Dadurch miissen
nicht mehrere Farb- und Tiefenpuffer angelegt werden, da jeder Thread innerhalb der
Puffer seinen eigenen, disjunkten Bereich hat, auf den niemals ein anderer Thread le-
send oder schreibend zugreifen wird. Im Vergleich zur Implementierung aus Abschnitt
4.1.3.2 missen daher nicht mehrfach grofie Speicherbereiche wie der Farb- und Tie-
fenpuffer allokiert werden. Dementsprechend entfaillt auch der Schritt des Mischens,
da alle Threads auf denselben Puffern arbeiten und innerhalb dieser ausschliellich
auf die ihnen zugeteilten Bereiche zugreifen. Insgesamt setzt sich daraus dann das
vollstdandige Bild im Farbpuffer zusammen.

Unter der Pramisse, dass alle Threads einen moglichst gleichen Teil der Rasteri-
sierung iibernehmen sollen, bietet es sich nicht an, die Puffer in n, gleich grofle hori-
zontale oder vertikale Streifen zu unterteilen, weil die Bildinformation haufig zusam-
menhangend in der Mitte der Szene konzentriert ist. Deswegen besteht beim Einteilen
in gleich grofle Streifen zusammenhéngende die Gefahr, dass die Bildinformation un-
gleich auf die Threads verteilt wird und zum Beispiel die Threads, die sich um den
obersten und untersten Streifen kiimmern deutlich weniger Rasterisierungsarbeit er-
ledigen, als die fiir das Zentrum verantwortlichen.

34

4.2. Zeilenweise Verteilung der Arbeit auf die Threads

-

Abbildung 4.6.: Einteilung der Puffer auf die verschiedenen Threads

Sinnvoller hingegen ist es, jedem Thread ¢; den ¢; + ny-ten Streifen des Farb- und
Tiefenpuffers zuzuweisen. Der Thread ¢; kiimmert sich also um alle Zeilen z aus dem
Farb und Tiefenpuffer, bei denen z = ¢; (mod n;) gilt. Der erste Thread tibernimmt
beispielsweise die Zeile 0,ny,2ny, ..., der zweite 1,1 + ng, 1 + 2ny,.... Diese Aufteilung
erhoht die Wahrscheinlichkeit einer gleichméfigen Aufteilung der zu rasterisierenden
Bildinformation, da ein Dreieck eines Gitters, dessen Hohe n; iiberschreitet, unab-
héangig von seiner Positionierung gleichméflig auf die Threads aufgeteilt wird. In der
obigen Abbildung 4.6 hat jeder der n, = 4 Threads eine eigene Farbe und es ist einge-
zeichnet, fiir die Rasterisierung welcher Zeilen er verantwortlich ist. Eine schematische
Visualisierung des Gesamtablaufs ist in Abbildung 4.7 dargestellt. Jene Pixel, die ein-
gefarbt werden, sind mit einem Kreuz markiert.

Bei der Rasterisierung wird zunéchst innerhalb des Main-Threads tiber die Gitter
und schliefllich innerhalb jedes Threads iiber die Dreiecke iteriert, indem sie der Queue
entnommen werden. Liegt ein Dreieck vollstandig in einem Bereich, das keine Zeile
beinhaltet, fiir die der aktuelle Thread verantwortlich ist, wird es tibersprungen und
mit dem nachsten fortgefahren. Um zu ermitteln ob dies der Fall ist, sind jedoch
Berechnungen von Noten, die bei der Rasterisierung ohnehin anfallen wiirden. Die
dadurch erzielte Einsparung ist dementsprechend iiberschaubar. Die Motivation fiir
die Queue ist dhnlich wie in Abschnitt 4.1.3.1.

Obwohl dieser Ansatz den Vorteil hat, weniger Speicherplatz beanspruchen zu miis-
sen, ist er in der Praxis deutlich langsamer, als die in Abschnitt 4.1 beschriebene
Alternative. Ursache dafiir ist unter anderem, dass jeder Thread alle Dreiecke eines
Bildes durchlaufen muss, unabhéngig davon, ob ein Dreieck eine fiir den Thread re-
levante Zeile enthélt. Innerhalb jedes Threads ¢; wird deswegen gepriift, ob eine Zeile
z innerhalb des Dreiecks liegt, bei der z = ¢; (mod n;). Ist diese Priifung negativ, wie
es bei vielen kleinen Dreiecken héufig der Fall ist, war die gesamte Rechnung fiir den
Thread irrelevant und es wird mit dem néchsten Dreieck fortgefahren. Die beschrie-
bene Priifung ist jedoch zeitintensiv und muss fiir ausnahmslos jedes Dreieck in jedem
Thread geschehen.

35

4. Parallelisierung

Dreiecksgitter ¢ Dreiecksgitter i-1 N Dreiecksgitter 1 Iy Dreiecksgitter i+1 Dreiecksgitter n
letztes_gitter = 0 letztes_gitter = 0 letztes_gitter =0 letztes_gitter =0 letztes_gitter =1

X

einreihen einreihen einreihen einreihen
Dreiecksgitter i-1 Dreiecksgitter i-1 Dreiecksgitter i-1 Dreiecksgitter i-1
Dreiecksgitter i-j Dreiecksgitter i-j Dreiecksgitter i-j Dreiecksgitter i-j
entnehmen <~ entnehmen €= entnehmen ﬁ entnehmen <€~
Yy Y Yy
Thread 1 Thread 2 Thread 3
. . Nein . X Nein X . Nein . . Nein
Zeichnen der fiir diesen Zeichnen der fiir diesen Zeichnen der fiir diesen Zeichnen der fiir diesen
Thread relevanten Zeilen Thread relevanten Zeilen Thread relevanten Zeilen Thread relevanten Zeilen
des Dreiecksgitters des Dreiecksgitters des Dreiecksgitters des Dreiecksgitters
Farb- Tiefen- Farb- Tiefen- Farb- Tiefen- Farb- Tiefen-
puffer 1 Puffer 1 puffer 1 Puffer 1 puffer 1 Puffer 1 puffer 1 Puffer 1
letztes_gittter? — letztes_gittter? —/ letztes_gittter? I letztes_gittter? -
Ja Ja Ja Ja
Warten, bis Warten, bis Warten, bis Warten, bis
alle Threads alle Threads alle Threads alle Threads
fertig sind fertig sind fertig sind fertig sind

i

Fertige Grafik
in Farbpuffer 1

Abbildung 4.7.: Grober Ablauf der zweiten Variante des parallelen Renderns fiir n, = 4
Threads

36

4.3. Weitere Optimierungen

Andernfalls ist bei positiver Priifung der Overhead zur Ermittlung der Schnittmen-
ge der durch den Thread zu rasterisierenden Zeilen und der zum Dreieck gehorigen
Zeilen hoher als das einfache Durchlaufen aller Dreieckszeilen, besonders bei kleinen
Dreiecken, die haufig in prézisen Darstellungen auftreten.

Des Weiteren ist der Rasterisierungsalgorithmus darauf ausgelegt, durch die Initia-
lisierung der zur Rasterisierung bendtigten Werte anschliefend durch wenige Opera-
tionen ein zeilenweises Durchlaufen des Dreiecks von unten nach oben zu ermaoglichen.
Durch das Uberspringen von fiir den Thread nicht relevanten Zeilen wird neben an-
derem der Vorteil, der durch die Implementierung der inkrementellen Berechnung
baryzentrischer Koordinaten entsteht, nicht optimal ausgenutzt, da in jedem Thread
eine initiale Berechnung stattfinden muss. Ahnliches gilt fiir die Steigung der Drei-
eckskanten, die nur einmal pro Dreieck berechnet wird. Zusammengefasst bedeutet
dies, dass das Rasterisieren jeder n;-ten Zeile eines Dreiecks bei weitem nicht nur nit
der Zeit benotigt.

In seiner Struktur ist diese Variante simpler und zudem bendtigt sie weniger Spei-
cherplatz, aber auf Grund der beschriebenen Nachteile und ihres Einflusses auf die
Ausfithrungszeit wurde die Implementierung verworfen. Stattdessen wird die in Ab-
schnitt 4.1 beschrieben wurde tibernommen, auf die sich im folgenden Abschnitt be-
zogen wird.

4.3. Weitere Optimierungen

4.3.1. Nutzen allokierter Teile des letzten Bildes

Allokationen sind relativ aufwéandig. Jedes Bild setzt sich nach dem Zeichnen der Drei-
ecksgitterteile aus n; Farbpuffern und den dazugehorigen n, Tiefenpuffern zusammen.
Um nicht in jedem Bild die genannten Speicherbereiche allokieren zu miissen, wer-
den nach dem Zeichnen eines Bildes die Speicherbereiche nicht freigegeben, sondern
sind fiir alle weiteren Bilder verfiighbar. Hat sich dann im nachsten Bild die Héhe und
Breite des Bildes nicht verdndert, wie es bei Animationen zum Beispiel oft der Fall
ist, konnen die Farb- und Tiefenpuffer aus dem Bild davor erneut verwendet werden.
Andernfalls miissen sie reallokiert werden, was in der Praxis jedoch héufig nicht der
Fall ist. In der Implementierung werden dazu Variablen hinterlegt, die die Hohe und
die Breite des letzten Bildes speichern, um beim néchsten Bild die Gleichheit tiber-
priifen zu kénnen. Das Prinzip der Wiederverwendung iiber die Bilder hinweg findet
sich auch bei den Threads wieder, wie in Abschnitt 4.1.3.1 beschrieben.

4.3.2. Fiillen der Farb- und Tiefenpuffer

Die Methode gr3_getpixmap_(pixmap) bekommt einen Farbpuffer (engl. Pixmap)
iibergeben, in den letztendlich das fertige Bild eingefiigt soll. Vom Software-Renderer
selbst allokiert werden miissen also nur die restlichen n; —1 Farb- und n; Tiefenpuffer.
Der iibergebene Farbpuffer wird initial mit der Hintergrundfarbe des Bildes gefiillt,

37

4. Parallelisierung

die vom Nutzer spezifiziert werden kann. Der dazugehorige Tiefenpuffer wird mit dem
Wert Eins zuriickgesetzt, da tiefere Elemente nicht gezeichnet, sondern abgeschnitten
werden. Das in diesen beiden Féllen zum Fillen verwendete Durchlaufen der Farb-
puffer und des Tiefenpuffers ist zeitintensiv. Aus diesem Grund werden alle restlichen
Farbpuffer durch malloc() allokiert, anstatt auch die Hintergrundfarbe zugewiesen
zu bekommen. Alle Tiefenpuffer, bis auf den zum letztendlich dargestellen Farbpuf-
fer gehorigen, werden wegen der guten Performance mit einem memset () initialisiert.
Dieses setzt eine spezifizierte Anzahl von Bytes beginnend bei einer Startadresse auf
einen Wert, sodass spater, bei der Interpretation von vier aufeinanderfolgenden Bytes
eine FlieBkommazahl resultiert, die grofler als Eins ist. Alle Pixel, die aufgrund eines
zu zeichnenden Teildreiecksgitters in den Farbpuffern eingefdrbt werden, bekommen
dann ohnehin den korrekten Tiefenwert in Zuge der Rasterisierung zugewiesen.

Nach einem Bild muss nur der Farbpuffer, der am Ende dargestellt wird, noch ein-
mal mit der Hintergrundfarbe gefiillt und jeder Wert des dazugehorigen Tiefenpuffers
auf den Wert Eins gesetzt werden. Die anderen Tiefenpuffer werden dann wie oben
beschrieben durch die performante Operation memset () auf einen Tiefenwert grofier
als Eins gesetzt. Der Inhalt aller Farbpuffer bis auf den ersten ist zu diesem Zeitpunkt
irrelevant, da die darin enthaltene Information in Kombination mit den Tiefenpuffern
ohnehin in einem Mischvorgang nie verwendet wird. Die Tiefenpuffer geben nam-
lich Aufschluss dariiber, welche der Daten aus den dazugehorigen Farbpuffern sich
hinter dem Hintergrund aus dem ersten Farbpuffer befinden. Deswegen miissen die
Farbpuffer nicht zuriickgesetzt werden, wodurch Zeit eingespart wird. Beim Rasteri-
sierungsvorgang werden Elemente, die tatséchlich vor dem Hintergrund sind, auch mit
einem passenden Tiefenwert in den anderen Farbpuffern hinterlegt, sodass dies beim
Mischen keine Komplikationen verursacht. Lediglich die initale Fiillung ist nicht von
Bedeutung, da wegen der Tiefe ohnehin die korrekte, im Zielfarbpuffer befindliche,
Hintergrundfarbe praferiert wird. Wichtig sind also dann nur die von der Rasterisie-
rung veranderten Pixel, welche auch einen passenden Tiefenwert besitzen.

4.3.3. Arbeit mit und ohne Indexpuffer

Wie in Abschnitt 4.1 erwdhnt, kénnen die Dreiecke entweder iiber einen Indexpuffer
definiert sein, oder in die Eckpunkte in der Reihenfolge angegeben sein, in der sie die
Dreiecke bilden.

Im ersten Fall lohnt es sich, vor Beginn der Abarbeitung zunéchst alle Eckpunkte
inklusive ihrer Normalenvektoren vom Main-Thread transformieren zu lassen, ohne
den Indexpuffer dabei zu beriicksichtigen. Der Indexpuffer greift dann im weiteren
Verlauf des Programmes auf die bereits transformierten Eckpunkte zu. Zwar muss
dafiir ein Feld mit Eckpunkten allokiert werden, jedoch erwies sich diese Variante
in Tests als effizienter. Alternativ konnten zwar die Eckpunkte eines Dreiecks immer
unmittelbar vor dessen Zeichenvorgang transformiert werden, allerdings wiirde in die-
sem Fall derselbe Eckpunkt mehrfach transformiert werden, wenn der Indexpuffer ihn
in mehreren Dreiecken referenziert.

Im Falle ohne Verwendung eines Indexpuffers kénnen die Transformationen unmit-

38

4.3. Weitere Optimierungen

telbar vor dem Zeichenvorgang des Dreiecks geschehen. Damit entféllt die zeitaufwan-
dige Allokation des Speichers und die Eckpunkte konnen in transformierter Form in
einem Feld auf dem Stack hinterlegt werden. Des Weiteren sind dadurch die Trans-
formationen ebenfalls parallelisiert. Hier ist das Programm ohnehin nicht in Kenntnis
dartiber, ob der gleiche Eckpunkt mehrfach transformiert wird, oder nicht, da die
Informationen im urspriinglichen Feld der Eckpunkte redundant hinterlegt wéren.

39

5. Zusammenfassung und Ergebnisse

5.1. Zusammenfassung

Der Software-Renderer aus [Rit19] wurde in seiner Funktionalitidt erweitert, sodass
nun alle von GR3 erzeugten Dreiecksgitter gezeichnet werden kénnen, was vorher nur
mit Hilfe einer OpenGL-Implementierung moglich war. Dadurch kénnen alle Szenen
des GR3 automatisch auch ginzlich ohne Hardwarebeschleunigung dargestellt wer-
den, falls diese nicht verfiigbar ist. Um den gesamten Funktionsumfang abzudecken
mussten SSAA zur Kantenglattung und zuséatzliche Beleuchtungsberechnungen imple-
mentiert werden.

Zur Optimierung des Programmes wurde zunachst die Anzahl der benotigten Be-
rechnungen minimiert. Dazu gehort hauptsachlich die Implementierung der ,Window
Search Rasterisierung®, ein alternativer, schnellerer Algorithmus zur Rasterisierung
von Dreiecken, der die urspriingliche Implementierung der , Rasterisierung mit um-
gebenden Rechteck® vollstéindig ersetzt. In dem neuen Algorithmus werden zudem
baryzentrische Koordinaten inkrementell berechnet und die Anzahl der bendtigten
Allokier- und Kopieroperationen moglichst minimiert.

Weiterhin wurde die Implementierung parallelisiert. Dazu wurden zwei Methodiken
verglichen. In der ersten werden Teile von Dreiecksgittern jeweils von einem Thread
in seinen Farbpuffer gezeichnet und am Ende die Puffer aller Threads bereichsweise
parallel zusammengemischt. Die zweite Methodik teilt den Farb- und Tiefenpuffer in
Streifen mit einem Pixel Hohe auf, sodass jeder Thread die gleiche Anzahl solcher
gleichméfig verteilten Streifen zugewiesen bekommt und nur diesen Teil der Pixmap
visualisieren miissen. Auf den Bereich greifen die anderen Threads niemals zu. Wegen
des Geschwindigkeitsvorteils setzte sich die erste Variante durch und wurde folglich
weiter untersucht und optimiert.

5.2. Ergebnisse

GR3 beinhaltet nun einen Software-Renderer, auf den automatisch zuriickgegriffen
wird, wenn keine hardwarebeschleunigte OpenGL Implementierung vorliegt. Explizit
ausgewahlt werden kann der Software-Renderer durch das Setzen der Umgebungsva-
riablen GR3_USE_SR. Dies funktioniert auch in Umgebungen, die Hardwarebeschleu-
nigung unterstiitzen. Die erzeugten Grafiken unterscheiden sich von jenen, die mit
OpenGL erzeugt wurden, nur minimal auf Grund von Ungenauigkeiten der FlieBkom-
maarithmetik. Die Testbeispiele wurden alle, sofern nicht explizit anders erwéhnt, auf
einem Ubuntu System mit 16 Kernen erzeugt. Die Zeiten in Zahlen befinden sich im
Anhang A.

40

5.2. Ergebnisse

5.2.1. Test mit hoher geometrischer Komplexitat

Der erste Test besteht aus der Visualisierung mehrerer Schéadel. Jeder Schédel ist
ein Dreiecksgitter bestehend aus 76382 zu rasterisierenden Dreiecken. Die Schédel
sind in einem Rechteck angeordnet, in einer Reihe sind 15 Stick und es gibt acht
Reihen, somit ergeben sich insgesamt 120 Schidel. Um das Wachstum der Laufzeit
mit wachsender Anzahl an Schideln zu ermitteln und zu vergleichen, wurden Tests
mit zunehmender Anzahl an Reihen r; mit r; € {1,2,3,4,5,6,7,8}, also angefangen bei
15 bis hin zu 120 Schédeln in Schritten der Gréfie 15, durchgefithrt. Sind alle Schéadel
dargestellt, sieht die Grafik wie folgt aus.

ST

Abbildung 5.1.: Testgrafik mit 120 Schédeln

Dazu wurde die Laufzeit der Erzeugung von 3000 Bildern gemittelt, also die durch-
schnittliche Zeit zur Erzeugung eines Bildes errechnet. Der Laufzeitvergleich liefert
dieses Ergebnis.

41

5. Zusammenfassung und Ergebnisse

—— llvmpipe |
L5 —— GR3 SR

Zeit [s]

0,5 |

20 40 60 80 100 120
Anzahl an Schadeln

Abbildung 5.2.: Testergebnisse bei variabler Anzahl an Schéideln

Der Software-Renderer des GR3 ist im Falle von 120 Schadeln ungefahr acht Mal
schneller als die Implementierung von llvmpipe. Fiir 15 Schédel liefert der Software-
Renderer des GR3 ungefidhr 25 Bilder pro Sekunde, was in einer Animation anndhernd
fliissig wire. Der konkurrierende Software-Renderer llvmpipe schafft unter gleichen
Bedingungen lediglich finf Bilder pro Sekunde.

Eine Besonderheit an diesem Beispiel ist die enorm hohe Anzahl von sehr kleinen
Dreiecken, die grofitenteils nur zur Einfarbung weniger oder gar keiner Pixel fiih-
ren. Fur eine hohe geometrische Komplexitat mit geringer Anzahl zu fillender Pixel
schneidet der Software-Renderer des GR3 diesem Beispiel nach zu urteilen besser ab
als llvmpipe. Dies legt die Frage nahe, wie ein Laufzeitvergleich mit wenigen grofien
Dreiecken im Gegensatz dazu aussieht.

5.2.2. Test mit geringer geometrischer Komplexitat

Wie im vorherigen Abschnitt erldutert soll nun die Ausfihrungsgeschwindigkeit beim
Fullen mehrerer grofler Dreiecke getestet werden. Dazu werden zwei Dreiecke gezeich-
net, die das gesamte Bild fiillen. In GR3 bilden sie zusammen ein Dreiecksgitter, das
wie folgt aussieht.

Abbildung 5.3.: Testgrafik mit zwei das gesamte Bild abdeckenden Dreiecken

42

5.2. Ergebnisse

Um ein reprasentatives Ergebnis zu erhalten, werden die dargestellten Dreiecke
mehrmals gezeichnet. Dabei befinden sich die Dreiecke in der zu zeichnenden Rei-
henfolge tibereinander, sodass der Tiefentest keinen Einfluss auf das Ergebnis hat.
So wird das Wachstum der Laufzeit im Vergleich zur wachsenden Anzahl an grofien
und tbereinanderliegenden Dreiecken getestet, was der wachsenden Anzahl an Sché-
deln aus dem vorherigen Test entspricht, wobei das Verhaltnis zwischen geometrischer
Komplexitdt und Anzahl zu fiilllender Pixel deutlich geringer ist. Getestet wurde mit
einer Auflésung von 1000 x 1000 Pixel. Die Anzahl der Dreiecke ist dabei ein Para-
meter, der von 200 bis 3000 pro Bild variiert und in Schritten der Grofle 200 wéchst.
Der Laufzeitvergleich liefert visualisiert das folgende Ergebnis.

120 - \ _
—— llvmpipe

—— GR3 SR

100

80

60

Zeit [ms]

40 + 2

20 2

0 500 1000 1500 2000 2500 3000
Anzahl an Dreiecken

Abbildung 5.4.: Testergebnisse bei variabler Anzahl an Dreiecken

Der Software-Renderer ist fir jede getestete Anzahl an Dreiecken langsamer. Die
Implementierung mit llvmpipe braucht fiir zusatzliche 200 Dreiecke circa 2,5 ms léan-
ger. Der im Rahmen dieser Bachelorarbeit implementierte Software-Renderer benotigt
fiir denselben Schritt circa 5ms linger. Beide Laufzeiten wachsen linear mit der An-
zahl der Dreiecke, jedoch die des Software-Renderers des GR3 deutlich steiler, sodass
dieser tendetiell eher fiillratenlimitiert ist.

Ein Unterschied in der Laufzeit lasst sich schon bei den ersten 200 Dreiecken er-
kennen, da sie dort fiir den Software-Renderer des GR3 bei der Messung mit der
geringsten Anzahl an Dreiecken ungefahr 5 mal so hoch ist. Dies hdangt mit dem Auf-
wand fiir die Initialisierung der Threads, Tiefen- und Farbpuffer zusammen, die auch
fiir wenige Dreiecke schon viel Zeit in Anspruch nehmen und daher anteilig bei einer
simpleren Aufgabe mehr ins Gewicht fallen. Die Fillrate, also die Anzahl der Pixel,
die pro Sekunde eingefarbt werden konnen, scheint bei llvmpipe hoher zu sein.

43

5. Zusammenfassung und Ergebnisse

5.2.3. Test mit variabler geometrischer Komplexitat und
konstanter Anzahl zu fiillender Pixel

Die bisherigen Tests lassen vermuten, dass viele kleine Dreiecke, also eine hohe geome-
trische Komplexitét, schneller mit dem im GR3 implementierten Software-Renderer
erzeugt werden kénnen und wenige grofle schneller mit llvmpipe dargestellt werden
kénnen. Dies legt einen Test nahe, bei dem die Geometrie veranderlich ist, aber die
Anzahl insgesamt zu fullender Pixel gleich bleibt. Es wird also die gleiche Fliche
gefiillt, wihrend die Anzahl der Dreiecke, aus der sich die Flache zusammensetzt,
variiert. So ldsst sich nachvollziehen, wie die Gréfie und Anzahl der Dreiecke Einfluss
auf die Geschwindigkeit nimmt. Demnach lasst sich durch diesen Test zeigen, ob es
ein Verhéltnis zwischen Komplexitidt und Anzahl zu filllender Pixel gibt, bei welchem
der Software-Renderer des GR3 schneller ist.

In diesem Testbeispiel wurde ein Dreieck erzeugt, welches rekursiv in gleich grofie
Teildreiecke zerlegt wird. Die einfache und doppelte Zerlegung eines Dreiecks sieht
dabei wie folgt aus.

(a) Nicht zerlegt (b) Einfach zerlegt (c¢) Doppelt zerlegt

Abbildung 5.5.: Testgrafik zur Zerlegung eines Dreiecks in Teildreiecke

Dadurch entsteht bei gleichbleibender Anzahl an geftillten Pixeln eine hohere geo-
metrische Komplexitéit. Interessant ist hier der Vergleich der Laufzeit bei wachsender
Anzahl Unterteilungen. Aufgetragen ist im folgenden die Anzahl der Dreiecke, die
durch die Unterteilung entstehen und die dafiir benétigte Zeit. Erstellt wurden je-
weils 40000 Bilder mit einer Auflésung von 500 x 500 Pixeln.

44

5.2. Ergebnisse

——llvmpipe

—— GR3 SR
6 -
N |
g 4 f
3 [-

| | | | |
4,000 8,000 12,000 16,000 20,000

Anzahl an Dreiecken

Abbildung 5.6.: Testergebnisse bei variabler Anzahl an durch Zerlegung entstehenden
Dreiecken

Die Laufzeit von llvmpipe wéchst linear mit der Anzahl der Dreiecke an, obwohl
die Anzahl einzufidrbender Pixel gleich bleibt. Hingegen ist die bendtigte Zeit vom
im GR3 implementierten Software-Renderer nahezu konstant, genauso wie die An-
zahl eingefirbter Pixel. Im Falle von iiber circa 16000 Dreiecken, also ungefahr ei-
ner siebenfachen rekursiven Unterteilung des Dreiecks, fithren viele der Teildreiecke
iiberhaupt nicht zur Einfdrbung eines Pixels. Trotzdem nehmen besagte Dreiecke bei
llvmpipe nahezu die gleiche Zeit in Anspruch, wie welche, die zur Einfarbung fiihren,
was daran erkennbar ist, dass sie gleichermaflen fiir einen Anstieg der Laufzeit sorgen.

5.2.4. Test mit konstanter geometrischer Komplexitat und
variabler Anzahl zu fiillender Pixel

Im Beispiel aus Abschnitt 5.2.3 variierte die geometrische Komplexitit, die Anzahl
zu fiillender Pixel blieb jedoch konstant. In diesem Beispiel soll dies umgekehrt wer-
den, sodass geprift wird, wie sich bei gleichbleibender geometrischer Komplexitat die
Laufzeit bei steigender Anzahl zu fiillender Pixel bei den beiden Varianten verhalt.
Dazu wird die gleiche Grafik wie aus dem Testbeispiel mit geringer geometrischer
Komplexitit verwendet, jedoch werden pro Bild keine tiberlappenden, sondern nur
zwei zusammen das gesamte Bild abdeckende Dreiecke gezeichnet. Die variable Grofie
ist die Auflosung des gesamten Bildes, mit ihr variiert entsprechend die Anzahl insge-
samt einzufiarbender Pixel. Getestet wird eine Auflésung von 10 x 10 bis zu 200 x 200
ansteigend mit Schrittgrofie 10. Die Laufzeitmessung liefert das folgende Ergebnis fiir
die Zeit pro Bild.

45

5. Zusammenfassung und Ergebnisse

——llvmpipe

04| f

Zeit [ms]

| | | |
0 10000 20000 30000 40000
Anzahl an Pixeln

Abbildung 5.7.: Testergebnisse bei variabler Auflésung

Die aus den vorherigen Testbeispielen hergeleitete Vermutung, fiir kleine Dreie-
cke wire die Laufzeit beim in GR3 implementierten Software-Renderer geringer als
bei llvmpipe, bestétigt sich fur dieses Testbeispiel. Mit steigender Auflésung wéchst
die Laufzeit beider Testbeispiele, jedoch die von llvmpipe flacher. Dies ist demnach
das entsprechende Gegenbeispiel zum vorherigen Testbeispiel, bei dem der Software-
Renderer des GR3 die Laufzeit von llvmpipe bei steigender Komplexitat unterschrei-
tet, da hier bei steigender Anzahl an auszufiillenden Pixeln und gleicher Komplexitét
llvmpipe verhaltnisméfig schneller wird. Fur kleine Dreiecke ist der Software-Renderer
des GR3 schneller.

5.2.5. Test der Skalierung bei variabler Anzahl an Threads

Abbildung 5.8.: Testgrafik mit einem Schéadel
46

5.2. Ergebnisse

Das letzte Testbeispiel soll darstellen, wie die Performance des Software-Renderers des
GR3 abhéngig von der Anzahl verfiigharer CPU Kerne skaliert. Getestet wird eine
Grafik mit hoher geometrischer Komplexitét, aber auch einer insgesamt grofien Anzahl
zu fiilllender Pixel. Die Testgrafik zeigt den selben Schédel wie im Test mit hoher
geometrischer Komplexitat, jedoch wird er dieses Mal grofler skaliert und lediglich
einmal dargestellt, wie der folgenden Abbildung 5.8 entnommen werden kann.

Auf dem verwendeten System sind nun anders als in den vorherigen Beispielen 12
Kerne beziehungsweise 24 Threads verfiighar [Int]. Fir diesen Test wird die Anzahl
verwendeter Threads variiert und dabei die Laufzeit gemessen. Visualisiert ergibt sich
die folgende Grafik.

——GR3 SR

35

30 |- :

Zeit [ms]
[\
(@
T
|

20

15 1 2

0 5 10 15 20 25
Anzahl an Threads

Abbildung 5.9.: Testergebnisse bei variabler Anzahl an Threads

Die Laufzeit nimmt besonders durch Hinzufiigen eines zweiten, dritten und vierten
Threads ab. Anschlielend fallt sie nur noch leicht, bis sie dann circa ab dem zwolften
Thread wieder wachst. Dies liegt daran, dass dann insgesamt zwolf Threads und zu-
sétzlich ein Main Thread arbeiten, sodass kein echter CPU-Kern mehr verfiigbar ist,
sondern nur noch solche, die durch Hyperthreading entstehen. Des Weiteren bewirkt
die Parallelisierung fiir hohe Anzahlen an Threads keinen Geschwindigkeitsvorteil,
weil dann der Zusatzaufwand pro Thread (inklusive Allokationen) die aufgeteilte Ar-
beit des Rendering Prozesses dominiert.

5.2.6. Schlussfolgerung aus den Tests

Die Tests legen nahe, dass der implementierte Software-Renderer primér durch die
Anzahl zu fillender Pixel limitiert ist. Die Laufzeit wachst hauptsichlich mit stei-
gender Anzahl von insgesamt zu fiillenden Pixeln, wie dem Beispiel mit geringer
geometrischer Komplexitédt entnommen werden kann. Hingegen kann eine feste An-
zahl an Pixeln unabhangig von seiner Geometrie in nahezu konstanter Zeit dargestellt
werden, wie dem Testbeispiel 5.2.3 entnommen werden kann.

47

5. Zusammenfassung und Ergebnisse

Die vom Software-Renderer llvmpipe benotigte Laufzeit wéchst primér mit der
geometrischen Komplexitat, wie Beispiel 5.2.3 zeigt. Die Fillrate ist dort haufig nicht
der ausschlaggebende limitierende Faktor der Rasterisierung, also wird ein Objekt
der gleichen geometrischen Komplexitat in linear mit seiner Grofle ansteigender Zeit
rasterisiert, wie Beispiel 5.2.4 zeigt. Das Wachstum der Laufzeit im Verhéltnis zur dar-
gestellten Grofle ist dabei deutlich geringer, als die beim Software-Renderer des GR3,
also ist die Rate an befiillten Pixeln pro Sekunde bei llvmpipe hoher. Das Testbeispiel
5.2.1 untermauert das starke Laufzeitwachstum bei wachsender geometrischer Kom-
plexitit, wahrend die Anzahl einzufarbender Pixel pro Schadel langsamer wachsen als
die geometrische Komplexitat.

Fiir iibliche Anwendungsfélle ist der in GR3 implementierte Software-Renderer ge-
eigneter, da héufig sehr detaillierte Strukturen mit vielen kleinen Dreiecken gezeichnet
werden miissen. Die Fiillrate ist haufig nicht so hoch, dass sie an ihre Grenzen stoft.
Aus diesem Grund wére ein Wachstum der Zeit, das priméar von der geometrischen
Komplexitéit abhdngt, ungeeigneter als eins, das von der Anzahl der zu fiillenden Pixel
abhangt.

5.3. Ausblick

Aus den Testfillen ergibt sich unmittelbar die Verbesserungsmaglichkeit, die Fiillrate
zu erhéhen. Dadurch wiirden mehr Pixel pro Zeiteinheit eingefarbt werden kénnen
und die Laufzeit insbesondere fiir grofie Dreiecke enorm reduziert werden. Erreicht
werden konnte dies zum Beispiel durch Vektorisierung der Rasterisierung, auch wenn
der erste Versuch diesbeziiglich die Laufzeit ansteigen lieS. Aulerdem konnte sich das
Parallelisieren des Zeichenvorgangs eines groflen Dreiecks ebenfalls als lohnenswert
herausstellen.

Der Software-Renderer konnte insofern erweitert werden, als dass andere Kan-
tenglattungsalgorithmen implementiert werden. GR3 unterstiitzt bislang ausschlief3-
lich das rechenintensive Verfahren SSAA, welches auf der CPU erledigt wird und gute
Ergebnisse liefert. Zum einen konnten die dafiir benotigten Operationen parallelisiert
werden. Zum anderen konnen alternative und effizientere Kantenglattungsalgorith-
men implementiert werden, wie zum Beispiel FXAA und SMAA aus [Gral6]. Dies liefert
zwar andere Ergebnisse, jedoch ist die Ausfithrungsgeschwindigkeit niedriger und die
Ergebnisse sind qualitativ trotzdem deutlich besser als ohne Verwendung von Kan-
tenglattung.

Sind die Daten eines Dreiecksgitter mit einem Indexpuffer gegeben, finden die
Transformationen von Eckpunkten aus den in Abschnitt 4.3.3 erlauterten Grinden
nicht parallel statt. Der Main-Thread nimmt die Transformationen aller Eckpunke
vor und der restlichen Threads arbeiten dann auf den bereits transformierten Eck-
punkten. Stattdessen kann die Arbeit vorher auf die Threads verteilt werden, sodass
jeder Thread zunéchst einen Anteil an Eckpunkten transformiert und anschlieffend
seinen Anteil an Dreiecken rasterisiert.

Teile von Dreiecksgittern, die am Ende nicht innerhalb des darzustellenden Be-

48

5.3. Ausblick

reiches liegen, werden bei dem im Rahmen dieser Bachelorarbeit implementierten
Software-Renderer erst in Pixelkoordinaten abgeschnitten (Clipping). Die Dreiecke,
die sich génzlich auerhalb des Bildes befinden, kdnnten schon vorher (z.B. im View-
Space) verworfen werden, sodass sie nicht mehr den Berechnungen von der Rasteri-
sierung unterzogen werden. Dies bringt vor allem dann einen Geschwindigkeitsvorteil,
wenn viele Dreiecksgitterteile aulerhalb des darzustellenden Bereiches liegen.

49

A. Anhang

A.1. Ergebnisse der Laufzeitmessungen

Im folgenden werden die Zeiten der Laufzeitmessungen aus Kapitel 5 aufgefiihrt.

A.1.1. Test mit hoher geometrischer Komplexitat

Laufzeit in ms

Anz. Schédel | llvmpipe GR3 SR
15 208 44

30 408 75

45 596 91

60 791 115

75 977 141

90 1175 159

105 1349 180

120 1531 197

A.1.2. Test mit geringer geometrischer Komplexitat

Laufzeit in ms

Anz. Dreiecke | llvmpipe GR3 SR

200 5,91 28,87
400 7,41 36,58
600 9,99 40,24

800 11,54 4345
1000 13,52 5148
1200 16,51 56,34
1400 17,97 62,74
1600 19,60 68,60
1800 21,64 75,79
2000 2394 80,16
2200 25,68 86,13
2400 27,60 93,96
2600 29,60 101,30
2800 31,00 104,03
3000 34,17 110,45

A. Anhang

A.1.3. Test mit variabler geometrischer Komplexitat und
konstanter Anzahl zu fiillender Pixel

Laufzeit in ms

Anz. Dreiecke | llvmpipe GR3 SR
5002 2,44 5,13

7003 2,93 5,09

9004 3,44 5,13

11005 3,92 5,36

13006 4,47 5,32

15007 4,97 5,35

17008 5,56 5,25

19009 6,54 5,20

A.1.4. Test mit konstanter geometrischer Komplexitat und
variabler Anzahl zu fillender Pixel

Laufzeit in ms
Anz. Pixel | GR3 SR llvmpipe
100 0,152 0,192
400 0,158 0,194
900 0,159 0,200
1600 0,163 0,206
2500 0,165 0,210
3600 0,172 0,213
4900 0,189 0,219
6400 0,205 0,221
8100 0,228 0,235
10000 0,258 0,256
12100 0,280 0,279
14400 0,310 0,299
16900 0,345 0,313
19600 0,371 0,339
22500 0,400 0,371
25600 0,448 0,399
28900 0,491 0,423
32400 0,547 0,459
36100 0,600 0,470
40000 0,665 0,492

52

A.1. Ergebnisse der Laufzeitmessungen

A.1.5. Test der Skalierung bei variabler Anzahl an Threads

Laufzeit in ms
Anz. Threads GR3 SR

1 34,58
2 22.89
3 18,21
4 16,71
5 15,70
6 14,88
7 14,73
8 14,43
9 14,21
10 14,14
11 14,16
12 14,38
13 15,23
14 15,71
15 15,97
16 16,20
17 16,43
18 16,47
19 16,61
20 16,80
21 16,93
22 17,14
23 17,38
24 17,63

53

Literatur

[AS96]

[Bre62]

[Giel3]

[Gral6]

[Hen+11]

[Hug+14]

[Int]

[Len02]

[Rhi12]

[Rit19]

[VMw]

Andrew W. Appel und Zhong Shao. ,,Empirical and analytic study of stack
versus heap cost for languages with closures®. In: Journal of Functional
Programming 6.1 (1996), S. 47-74. DOI: 10.1017/S095679680000157X.

J. E. Bresenham. ,Seminal graphics®. In: IBM Systems Journal (1962),
S. 25-30.

Fabian Giesen. ,,Optimizing the basic rasterizer”. In: (2013). URL: https:
//fgiesen . wordpress . com/2013/02/10/optimizing-the-basic-
rasterizer/ (besucht am 10.07.2019).

Alexander Grahn. ,,An Image and Processing Comparison Study of Antia-
liasing Methods“. Bachelor’s Thesis. Blekinge Institute of Technology, De-
partment of Creative Technologies, 2016, S. 50. URL: http://www.diva-
portal.org/smash/get/diva2:972774/FULLTEXTO2. pdf.

Hengyong Jiang u.a. ,,A novel triangle rasterization algorithm based on
edge function®. In: Proceedings of 2011 Cross Strait Quad-Regional Radio
Science and Wireless Technology Conference. Bd. 2. Juli 2011, S. 1235—
1238.

J.F. Hughes u.a. Computer Graphics: Principles and Practice. The sys-
tems programming series. Addison-Wesley, 2014. 1SBN: 9780321399526.

Intel. INTEL® CORE™ ¢9-7920X PROZESSOR Spezifikation. URL: http
s://www.intel.de/content/www/de/de/products/processors/core/
x-series/i9-7920x.html (besucht am 19.08.2019).

Eric Lengyel. Mathematics for 3D Game Programming and Computer
Graphics. Charles River Media, 2002. 1SBN: 1584500379.

Florian Rhiem. ,Integration von 3D-Visualisierungstechniken in 2D-
Grafiksystemen®. Bachelor’s Thesis. FH Aachen — University of Applied
Sciences, 2012. URL: https://pgi-jcns.fz-juelich.de/pub/doc/Bach
elor/Bachelorarbeit_FlorianRhiem.pdf (besucht am 16.08.2019).

Jonas Ritz. ,Entwicklung eines Software-Renderers zur Visualisierung bi-
variater Funktionen“. Seminar Paper. FH Aachen — University of App-
lied Sciences, 2019. URL: https://pgi-jcns.fz- juelich.de/pub/
doc/Seminararbeiten/Seminararbeit _JonasRitz . pdf (besucht am
17.08.2019).

VMware. Gallium LLVMpipe Driver. URL: https://www.mesa3d.org/
1lvmpipe.html (besucht am 01.08.2019).

95

Literatur

[Vril4] Joey de Vries. Basic Lighting in OpenGL. 2014. URL: https://learnop
engl.com/Lighting/Basic-Lighting (besucht am 01.07.2019).

o6

