
Contents lists available at ScienceDirect

BioSystems

journal homepage: www.elsevier.com/locate/biosystems

3d-SPADE: Significance evaluation of spatio-temporal patterns of various
temporal extents

Alessandra Stellaa,b,1,⁎, Pietro Quaglioa,b,1,⁎, Emiliano Torrec,d, Sonja Grüna,b

a Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), JARA Brain Inst I (INM-10), Jülich Research Centre, Jülich, Germany
b Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
c Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, Zürich, Switzerland
d Risk Lab, ETH Zürich, Zürich, Switzerland

A R T I C L E I N F O

Keywords:
Fine temporal spike correlations
Massively parallel spike data
Higher-order correlation
Statistical evaluation
Computational performance

A B S T R A C T

The Spike Pattern Detection and Evaluation (SPADE) analysis is a method to find reoccurring spike patterns in
parallel spike train data, and to determine their statistical significance. Here we introduce an extension of the
original statistical testing procedure which explicitly accounts for the temporal duration of the patterns. The
extension improves the performance in the presence of patterns with different durations, as here demonstrated
by application to various synthetic data. We further introduce an implementation of SPADE in form of a sub-
module of the Python library Elephant (ELEctroPHysiological ANalysis Toolkit). The code is made publicly
available on GitHub, together with detailed documentation, tutorials, and the results presented here.

1. Introduction

The role of spike coordination at millisecond precision for in-
formation processing in the brain is widely debated (e.g. Brette, 2015).
Input spikes arriving synchronously to a neuron have been shown ex-
perimentally to be most effective in generating output spikes (e.g. Roy
and Alloway, 2001; Bender et al., 2006; Fino et al., 2010), suggesting
that neurons behave like coincidence detectors (e.g. Abeles, 1982;
König, 1994). Further research found evidence of the occurrence of
excess spike synchrony in relation to behavior (e.g. Riehle et al., 1997;
Kilavik et al., 2009). Progress in electrophysiological recording tech-
nology enabled the recording from hundred(s) or more neurons si-
multaneously (Schwarz et al., 2014; Buzsáki, 2004; Steinmetz et al.,
2018). Such large data sets require new analysis tools, since existing
methods like the Unitary Events analysis (Grün et al., 2002a,b) scale
poorly with increasing number of neurons. Therefore, in a previous
publication (Torre et al., 2013) we developed a new approach, the
Spike PAttern Detection and Evaluation (SPADE) method, to detect and
evaluate synchronous spike patterns in massively parallel spike trains.
The method first solves the formidable task of finding reoccurring spike
patterns in massively parallel spike train data by use of frequent item
set mining (Picado-Muiño et al., 2013). Then, it assesses their statistical
significance based on their size (number of neurons involved) and their
occurrence count. Application to experimental data revealed the

occurrence of behavior specific synchronous spike patterns (Torre et al.,
2016).

Investigations of the axonal conduction delays in the cortical net-
work showed that the time necessary for spike transmission can vary by
tens of milliseconds (Swadlow, 1988, 1994, 1998). Spikes emitted from
different neurons at different times may still arrive synchronously at a
neuron if the different sending times are compensated with different
delays. These considerations led to hypothesize that the cortical net-
work deploys not only synchronous, but also more general spatio-
temporal spike patterns (STPs) in network processing (Izhikevich, 2006;
Bienenstock, 1995). Under this assumption, the same behavior activates
the same neuronal assemblies, each of which produces as a result a
specific STP. Previous analysis of simultaneous recordings from few
neurons (Prut et al., 1998) showed the occurrence of millisecond-pre-
cise STPs related to behavior. Nevertheless, the existence of time-coding
schemes in contrast to pure rate-coding schemes is still debated (Brette,
2015). To clarify their existence in massively parallel spike data, we
search for spatio-temporal patterns and evaluate their significance. A
spatio-temporal pattern is here defined as a sequence of spikes, char-
acterized by the number of neurons involved, their occurrence times,
and the temporal lags between successive spikes.

Similarly to methods for synchrony detection, tools that were pre-
viously developed and used for the analysis of STPs in a small number
of simultaneously recorded neurons (e.g. Prut et al., 1998; Nádasdy

https://doi.org/10.1016/j.biosystems.2019.104022
Received 28 February 2019; Received in revised form 30 July 2019; Accepted 22 August 2019

⁎ Corresponding authors.
E-mail address: p.quaglio@fz-juelich.de (P. Quaglio).

1 Shared first authorship.

et al., 1999; Shimazaki et al., 2012) also scale poorly with the number
of neurons recorded in parallel. In this case, the number of potential
patterns grows exponentially not only with the total number of neurons
recorded, but also with the maximum temporal duration allowed in the
analysis. To overcome these difficulties we generalized the SPADE
analysis for evaluating also non-synchronous spike patterns (Quaglio
et al., 2017).

Here, we introduce a modification of the significance assessment of
STPs by SPADE to explicitly account for the pattern duration as a third
parameter to consider besides the pattern size and the occurrence
count. We define the pattern duration as the time difference between
the first and the last spikes of the pattern. We refer to the modified
approach as 3d-SPADE. The novel method computes the significance
threshold separately for patterns of different durations, enabling –
compared to the previous 2d-version – a more reliable detection of
patterns of longer duration and low occurrence count. The improved
performance is demonstrated on synthetic data. We also introduce here
the implementation of SPADE (both in its 2d and 3d versions) as a
module of the Python-based Electrophysiological Data Analysis Toolbox
(Elephant, RRID:SCR_003833)2, which provides a large number of
analysis methods for electrophysiological (spikes and LFP) data.

2. 2d-SPADE

Here we briefly introduce 2d-SPADE (below, “SPADE” for short),
the original method that 3d-SPADE builds upon.

SPADE consists of three successive steps: (a) mining all different
patterns present in the data at a prescribed high temporal resolution,
and counting their repetitions, (b) testing the statistical significance of
the detected patterns under the null-hypothesis that neurons do not
coordinate at that temporal resolution, and (c) removing those identi-
fied patterns that can be considered as a by-product of chance overlaps
of true pattern spikes and background activity. The first step addresses
the problem of extracting spike patterns in parallel recordings, and
solves it by employing a frequent pattern mining algorithm. The second
step is solved by a Monte-Carlo approach, which generates surrogate
data from the original data by spike dithering (Louis et al., 2010) to
implement the stated null hypothesis. It thereby determines the sig-
nificance level of patterns of a given size and occurrence count, and
discards patterns which are too small or too infrequent. The third step
performs a conditional statistical testing, which further discards pat-
terns selected in the second step, but that can be considered as a result
of chance overlap of background spikes and other retained patterns.
The three steps are detailed below.

2.1. Frequent item set mining

In order to systematically detect patterns with a fine temporal
precision (millisecond scale), it is necessary to deal with a number of
challenges. First, the number of possible combinations of patterns is
huge (infinite in continuous time). Second, one does not expect a pat-
tern to repeat identically at recording precision (e.g. 30 kHz), due to a
lower temporal resolution of the neuronal processes (≥1 ms).
Therefore, one needs to allow for, and be able to identify, repetitions of
patterns with some degree of temporal imprecision (up to a few milli-
seconds) of the inter-spike lags. Third, the number of potential patterns,
that can be produced by a population of N neurons, grows exponentially
with the number of spikes and neurons involved in a pattern.

We address the first two challenges by discretizing the time into
exclusive time intervals (bins) of a few milliseconds. The ideal bin size
corresponds to the temporal scale that is relevant for the coordination
of the neuronal activity. In Grün et al. (1999) and Pazienti et al. (2008)
we found that the time scale for which neuronal correlation is maximal

is in the order of a few milliseconds, which also dictates our choice of
the bin size. Each continuous spike train is thereby replaced by a se-
quence of consecutive time bins. Each bin takes the value 1 if the spike
train exhibits at least one spike during that bin, and 0 otherwise. The
spike train data are thus transformed into a two-dimensional binary
array, where each row corresponds to a neuron and each column to a
time bin. In these settings, a pattern is a specific constellation of ones in
the array. Mathematically, a pattern occurring within an analysis
window W spanning w bins can be represented as a set {(b1, n1), …, (bk,
nk)}, where k is the number of spikes comprising a pattern, i.e. bi is the
analysis window’s bin where the ith spike of the pattern falls, and ni
identifies the neuron that emitted that ith spike. The total occurrence
count of a pattern is determined by shifting the analysis window to the
right, and by counting the number of times the pattern is found across
all windows. If a pattern occurrence is found, the comprising spikes are
not re-used to find further occurrences of the same pattern, in order to
avoid artificially increasing the pattern’s occurrence count.

The number of potential patterns grows exponentially as a function
of the number of neurons and bins. Even for short recordings from a
moderate number of simultaneously recorded neurons, listing all pos-
sible patterns with their repetition counts becomes soon computation-
ally infeasible. SPADE solves this problem by only considering patterns
that (1) involve a minimum number of neurons (i.e. a parameter of the
analysis, default is 2), (2) occur a minimum number of times (frequent
sets), and (3) are not subsets of larger patterns occurring more often
(closed sets). Patterns which do not meet these criteria are considered
due to chance (or indistinguishable from chance patterns), without the
need for further statistical assessment. Frequent item set mining (FIM,
Agrawal et al., 1993) and formal concept analysis (FCA, Wille, 1982)
provide efficient algorithms to search for such structures in the data.
FIM and FCA cast the same problems in different formulations, leading
to equivalent solutions (Quaglio et al., 2017; Yegenoglu et al., 2016).
We stick here to FIM for consistency with our previous publications on
the SPADE method (Torre et al., 2013, 2016).

Given parallel binarized spike trains of N neurons, an item set is
defined as a set of spikes that form a pattern, and its support as the
number of times that the item set occurs in the data (Picado-Muiño
et al., 2013). We are interested in closed frequent item sets, that is,
patterns that occur a predefined minimum number of times, and with a
support that is larger than the support of any of their supersets. In order
to capture the temporal extension of the patterns, we slide a temporal
window of predefined duration w along the data, bin by bin. The
window length w sets the maximum duration of patterns that SPADE
finds (Fig. 1). In these settings, an item set is the set of spikes that occur
within each window position. First, all item sets are collected. Then,
FIM operates a tree search through these item sets requesting a
minimum support (frequent item sets): the search starts from patterns
of minimum size, and the tree is built such that its layers contain pat-
terns of increasing size. The closed frequent item sets are obtained by
successive pruning of the tree. The efficiency of the algorithm derives
from the fact that each pattern is visited at most once, and that the data
are stored in a compact data structure. For further details we refer to
Torre et al. (2013) and Quaglio et al. (2017). The output is a list of
closed frequent item sets (STP candidates) with their corresponding
support (number of occurrences).

2.2. 2-Dimensional pattern spectrum filtering

The second step of the SPADE method consists in testing the sta-
tistical significance of the patterns that were detected by FIM. Due to
the huge number of patterns that FIM detects in large data, testing each
single pattern individually would lead to a considerable multiple testing
problem. To overcome this issue, SPADE first tests pattern significance
based on the pattern size z and the pattern occurrence count c only.
Therefore patterns of the same signature (z, c) are pooled, and their
count is later tested for significance. We call the matrix containing all2 http://python-elephant.org.

A. Stella, et al.

counts of all signatures (z, c) pattern spectrum. The p-value of each
signature is determined by a Monte-Carlo approach that generates
surrogate data from the original data by spike dithering (Date et al.,
1999; Louis et al., 2010). Spike dithering randomly perturbs the exact
spike timing of each spike of the original data, thereby destroying po-
tentially existing patterns while preserving other properties of the data,
such as (co-)varying neuronal firing rates. The p-value of each signature

is determined by performing FIM on each of the many surrogate data
sets and by computing the fraction of surrogates that contain patterns
with that signature. The p-value of each signature (z, c) is stored as the
element Pz,c of the p-value matrix P, a matrix with the same dimensions
as the pattern spectrum. All closed frequent patterns found in the ori-
ginal data having statistically significant signatures are retained, while
the rest is discarded. This step, called pattern spectrum filtering (PSF),

Fig. 1. Pattern extraction. Top: example of spike trains (each line represents a spike) of N= 4 neurons recorded in parallel. The data are binned in bins of b ms, and
indicated by grey shaded vertical areas. A window of duration w is slid from bin to bin, containing spikes for pattern detection of maximal duration w. The second
panel from top shows the reformatting of a window of dimensions ×w N into a vector of dimensions ×w N· 1. This is done for each window position (not shown
here). Third panel from top (indicence table): example showing the vector representations of the windows at positions ω= i and ω = i+ n. Green crosses mark bins
that contain spikes in both vectors. These indicate a pattern occurring identically two times. Fourth panel: same illustration as the first panel, with the detected
pattern (by FIM) highlighted in green.

A. Stella, et al.

only retains patterns with a statistically significant signature.

2.3. Pattern set reduction

PSF extracts patterns whose signature is statistically significant
under the null hypothesis of spike train independence. If such patterns
are present, however, the step is prone to also classify as significant
those patterns that are due to chance overlap of the real patterns with
background spiking activity. These chance patterns have indeed a
larger size and/or occurrence count than expected under independence
(i.e. complete absence of significant patterns). To discard these false
positives, a further conditional testing step is performed, called pattern
set reduction (PSR). PSR evaluates the conditional significance of each
pattern given other patterns that partially overlap with it. For example,
if a pattern A of size zA is a superset of pattern B of size zB, which occurs
cB > cA times, PSR tests whether the additional occurrences of B alone
are still significant under the null hypothesis. It also tests whether the
pattern A ∖ B, which repeats zA times, is significant. Depending on the
results of this conditional testing, either one of the two patterns is
discarded, or both are kept as spatio-temporal patterns (STPs) (Torre
et al., 2013; Quaglio et al., 2017).

3. 3d-SPADE

Calibration on synthetic data has shown that SPADE is statistically
robust, and efficiently distinguishes between chance patterns and sta-
tistically significant STPs (Quaglio et al., 2017). Yet, the same cali-
bration also revealed that patterns with a longer duration are more
likely to be detected as false positives compared to shorter patterns that
occur the same number of times. This problem arises due to the fact that
2d-SPADE does not account for the pattern duration, i.e. the temporal
extent of the pattern. One pattern composed of z synchronous spikes
and a second one composed of z spikes spanning several bins, both
occurring c times, are assigned by 2d-SPADE the same signature (z, c)
and thus the same p-value. However, patterns of longer durations have
a higher probability to occur by chance, due to the larger number of
possible spike combinations that can be formed during that longer time
span, and should therefore be assigned a lower significance value
(higher p-value). As a minimal example, let us consider two different
pattern durations: 1 or 2 bins. Two neurons A and B can produce only
one spike pattern of size z= 2 in a single-bin: the synchronous pattern.
There exist, instead, two possible STPs of size z = 2 that extend over a
window of two bins: a spike from A followed by a spike from B, or vice
versa. In this scenario, and under independence and firing rate homo-
geneity, patterns of signature (2, c) extending over two time bins are
therefore 2 times as likely than a pattern extending over one bin to
happen by chance, and thus are correspondingly less significant. For
longer (more bins) and larger (more spikes) patterns this discrepancy is
even higher, given the larger number of combinations being possible. In
Section 4.1 we quantify this statement by deriving an approximate
calculation of how the pattern duration affects the pattern p-value
under simplifying assumptions regarding the spike trains’ statistics.

Furthermore, also the window length chosen for the pattern detec-
tion has an impact on the p-value assigned to patterns of the same
signature (z, c). A shorter window contains fewer chance patterns under
independence, thus yielding a smaller p-value.

To address the issues stated above, 3d-SPADE tests patterns with the
same signature (z, c) for significance separately for each pattern dura-
tion d. It does so by replacing the signature (z, c) by the triplet (z, c, d).
The corresponding pattern spectrum is now a 3-dimensional tensor with
pattern duration along the third dimension (see Fig. 2, left). Also the p-
value spectrum is extended to a 3-dimensional structure as is the PSF.
The p-value of each 3-dimensional signature is derived independently
using the same surrogate-based procedure as in the 2-dimensional
version (Fig. 2, right). This approach multiplies the number of tests to
be performed by the number of possible pattern durations, i.e. by the

number of bins the sliding window covers. To avoid an increased
number of false positives, we apply the Holm–Bonferroni multi-com-
parison correction (Holm, 1979) as compared to the false discovery rate
(FDR) correction (Benjamini and Hochberg, 1995) used in Torre et al.
(2013) and Quaglio et al. (2017) for the 2d spectrum. The Holm–Bon-
ferroni correction leads to a comparable statistical robustness in terms
of false positives for 3d-SPADE as the FDR correction does for 2d SPADE
(see Fig. 3).

4. Method validation

4.1. Comparison of 2d- and 3d-SPADE

Here we first investigate the statistical performance of 3d-SPADE in
comparison to the original 2d-SPADE method. This test aims to de-
monstrate the impact of considering the pattern duration on the final
assessment of the pattern’s significance. To this end we apply both
methods to simulated data sets comprising of N= 100 parallel spike
trains, modeled as independent Poisson processes of constant firing rate
with λ= 15 Hz and a total duration T= 10 s. The data are enriched
with spike patterns of different durations to demonstrate the danger of
false negatives in case of 2d-SPADE. We inject patterns of size z= 3 and
occurring c= 4 times each, but having different durations d= 0 ms,
2 ms, 6 ms, 8 ms, 12 ms. Fig. 3, top shows an example raster display of a
data segment containing three of the five injected patterns. The analysis
window length is varied as =w 1, 4, 7, 10, 13 bins, with a binsize
b= 1 ms. The green crosses in Fig. 3, middle panel, show the number of
injected patterns. Only patterns of duration d w can be detected by
FIM. For increasing window size, more and more injected patterns
should be detected by FIM and should be identified as significant pat-
terns. For 3d-SPADE this is clearly the case: all the patterns injected are
detected (Fig. 3, middle panel, right: all black bars coincide with green
crosses). However, in case of 2d-SPADE, no patterns are detected as
significant, i.e. as STPs, for window sizes of =w 10 and =w 13.

The explanation can be found in the lower panel of Fig. 3, which
shows for illustration purposes the p-values obtained using 2d-SPADE
(left) and 3d-SPADE (right) for patterns of different duration d (hor-
izontal axis), occurrence count c (vertical axis), and with fixed size
z= 3. For each window length w, p-values are shown for patterns of
different duration (x-axis) and occurrence counts for each respective
signature. In both cases signatures are resolved also for the duration,
but only in 3d-SPADE (right) p-values are duration-dependent. On the
left, the p-values are computed for pooled signatures of different
durations and are thus identical for the different durations (e.g. for each
w, and c). This resulted as significant for pattern durations of d= 1 ms,
4 ms, 7 ms, but not for d= 10 ms, 13 ms. Therefore no STPs are de-
tected for d= 10 ms, 13 ms. In contrast, for 3d-SPADE, the p-values
vary for each pattern duration d for a given window size w, and thus all
patterns of different durations are detected as STPs. Specifically, the p-
values of patterns of durations d= 0 ms, 2 ms, 6 ms, 8 ms, 12 ms for
c= 4 are ≃0.000,0.001,0.002,0.003,0.005, respectively.

In order to understand the dependence of the p-value on the pattern
duration, we provide a rough analytical derivation here. Under the
assumptions that the data are stationary and all neurons have the same
constant firing rates λ, we can derive an approximation of the p-value of
each pattern signature (z, c, d) under the null hypothesis of in-
dependence. A pattern involving z specific neurons has probability
p= (b · λ)z to occur at a specific time, with b the bin size. The prob-
ability X c() that the same pattern with a duration d occurs at least c
times within the total duration T of the data is given by a cumulative
binomial distribution with parameters p and =n

T d

b
(the total number

of window positions). The p-value of signature (z, c, d) is then given by
=p X c()· ·()z c d

N

N z

d

b, ,

!

() !
, where ·()

N

N z

d

b

!

() !
is the number of all pos-

sible combinations of patterns with z spikes and duration d. Using these
equations we can compute the p-values for the five patterns of different

A. Stella, et al.

Fig. 2. 3d-pattern spectrum and PSF spectrum. The graph on the left illustrates a 3d-pattern spectrum, which counts for each size z, occurrence c and duration d (z-
axis) the number of patterns occurring (color bar) with that signature. Thus a count of 2 may for example result from 2 patterns of identical signature {3 neurons, 25
occurrences, 51 ms duration}, but of different inter spike delay times and/or neuron compositions, e.g. {neuron id 1,2,3; Δt1 = 30 ms, Δt2 = 21 ms} and {neuron id 1,
3, 4; Δt1 = 15 ms, Δt2 = 36 ms}. For better visibility, the counts for low size and low occurrence counts (later resulting as non-significant; gray) are omitted. The
graph on the right is the PSF spectrum after significance evaluation, containing only two types of voxel content: significant (red; containing STPs) and non-significant
(light gray or transparent). Note that within a column for entries of same size and same occurrence, different durations may be significant or not.

Fig. 3. Comparison of 2d- and 3d-SPADE with respect to pattern duration. Top panel: raster plot of parallel spike trains (y-axis). Background spikes are shown in
black (independent Poisson processes of constant firing rate of λ = 15 Hz and a total duration T= 10 s), and 3 injected patterns in red. Only 15 out of 100 parallel
spike trains are shown for a duration of 350 ms, and only 3 out of 6 possible patterns of size z= 3, of different durations (d= 0 ms, 2 ms, 6 ms, 8 ms, 12 ms), each
injected c= 4 times. Middle and lower panels: 2d-SPADE results on the left, and 3d-SPADE on the right. In the middle panel, the histograms show the number of
detected significant patterns (STPs) when using different analysis window length (here: =w 1, 4, 7, 10, 13 bins of 1 ms along the x-axis). The green crosses show the
total number of injected patterns. 2d-SPADE does not detect all injected STPs, while 3d-SPADE does. Bottom panel: p-value spectra for each method, shown for
pattern size z= 3 and different number of occurrences c (y-axis) and pattern durations d (x-axis) for different analysis window sizes w (as titles at the top of the
panels). The p-values are indicated by the color scale, the lighter the smaller the p-value (color bar on the right). Significant signatures are marked with a red dot.
Analysis parameters are chosen as = 1 ms, = 0.05, = 15 ms, = 5000 surrogates. The complete code to reproduce this figure can
be found at https://github.com/INM-6/SPADE_applications/tree/master/multiple_pattern_durations/code. To run the complete analysis (from generation of the
artificial data up to plotting the figure) execute discussed in Section 5.2.

A. Stella, et al.

durations (see details above) as approximately pz,c,d ≃ 0.000, 0.001,
0.002, 0.003, 0.005. These values are very close (difference smaller
than 0.00001) to the computational results.

Unfortunately, this analytical approximation is not accurate for
most experimental data, because it heavily relies on assumptions of
stationarity and Poissonianity which are typically not met. Therefore
we derive the p-value spectrum in such a case by use of the bootstrap
approximation using surrogate data, as explained above.

It is worth highlighting the difference in meaning between the
window length w and the pattern duration d. The first defines the
maximal temporal duration of a pattern to be detected: any pattern of
temporal duration d w is detected by FIM, and thus can then be tested
for significance. The window duration w is an input parameter of the
method. The pattern duration is, in contrast, an intrinsic property of the
data which is not known for experimental data and thus results from the
analysis.

To summarize, for 2d-SPADE longer patterns may not be detected as
significant, since the total number of chance patterns up to w is large
such that a particular pattern of a particular duration is drowned. In
contrast, when the pattern duration d is considered as an additional
feature in the pattern signature (3d-SPADE), also longer patterns are
adequately detected.

4.2. Validation of 3d-SPADE

Next, we investigate the performance of 3d-SPADE for different
firing rate profiles, in terms of false positives and false negatives. We
define here false positives (FPs) as falsely detected significant patterns
that were not identical to the ones that were injected, but either pat-
terns composed purely of background spikes or patterns composed of
injected pattern spikes combined with other spikes. False negative (FN)
patterns are defined as injected patterns not detected as STPs. For this
purpose, we again generate artificial data for which we know the
ground truth.

For all data sets, we generate parallel spike trains of a certain
background rate into which we inject repeating patterns. The injected
patterns are composed of a sequence of z spikes (varied from 3 to 10)
(into the first z out of N neurons) and inserted them c times (as well
varied from 3 to 10). Thus, for each background rate profile (i.e. a data
set) we have 64 different data sets in respect to the pattern size and
occurrences. In order to possibly compare the results shown here for 3d-
SPADE to the 2d-SPADE results presented in Quaglio et al. (2017) we
insert the identical patterns, i.e. with temporal lags of l= 5ms between
each of the pattern spikes, as in the former study. The inserted patterns
are inserted within the duration of the data (T= 1 s).

All data sets consist of N= 100 parallel Poisson spike trains, but
they differ in the background firing rates. In the first data set, all
neurons have a stationary firing rate of λ= 25 Hz. The second data set
is composed of background firing rates that exhibit a sudden coherent
rate jump from 10 Hz to 60 Hz in all neurons for a period of 100 ms. The
third case comprises a heterogeneous data set where each neuron has a
stationary rate but each of a different rate. The firing rates vary across
the neurons from 5 Hz up to 25 Hz in equidistant steps. In the last data
set, 5 groups of 20 neurons each exhibit short and simultaneous rate
jumps (from 14 Hz to 100 Hz) for an interval of 5ms, sequentially with a
delay of 5ms, from the first to the last (5th) group. The four data sets
correspond to the four columns of Fig. 4 (stationary, coherence, het-
erogeneity, propagation, respectively). The first row of Fig. 4 shows
sketches of the respective rate profiles. The second row shows for each
data set an example raster plot. The rows below contain matrices of
false positives (third row), false negatives (fourth row), and the max-
imum of the two for each signature (z, c, d), for varying z and c. The
data are analyzed with 3d-SPADE, using bin size of b= 1 ms, a sliding
window of =w 50ms, and a significance level of α= 0.01, with the
Holmes–Bonferroni correction.

For deriving the FP rate (third row) and the FN rate (fourth row) the

data are generated and evaluated 100 times. The black circles in the FP
and the FN matrices indicate matrix entries that are larger than 0.05
(i.e. not significant for a looser significance level), which was chosen as
an arbitrary threshold to increase the readability of the plots. We find
that the FP rate is generally below 0.05 (logarithmic scale, color bar on
the right) for all pattern configurations and is equally distributed within
a matrix. For coherent rate jumps of all neurons, typically reported as a
case leading to FPs (Louis et al., 2010), the FP rate is particularly low.
Indeed, having a larger maximal firing rate (60 Hz), even only for a
short time (100 ms), increases the number of chance occurrences of
patterns and thereby requires larger number of patterns to occur to
become significant. Thereby less FPs occur. This, on the other hand,
causes slightly larger number of FNs.

Rate propagation (Fig. 4, right column) does not lead to an enlarged
level of FPs as compared to the other data sets, although these short
coherent rate increases augment the probability to get chance syn-
chrony, and sequences of those. In fact, the surrogate method for gen-
eration the null hypothesis is well compensating for that.

On the other hand, the FN rate of the detection of the injected
patterns is also generally low (between 0.001 and 1%). That means that
most of the patterns that occur more than 4 times are correctly iden-
tified, i.e. with low FN rates.

In Quaglio et al. (2017) we studied the identical scenario for 2d-
SPADE. Interestingly, the results of both analyses correspond strongly:
both show a low FP rate and a low FN rate even for strongly co-varying
background rates. Since in these data we only studied patterns of one
specific duration, the disadvantages of 2d-SPADE discussed above (high
FN rate for longer patterns) do not come into play here. In addition, the
statistical performance agrees well for both methods, indicating that the
Holmes–Bonferroni multiple testing correction is well chosen.

Finally, we observed a similarly good performance (high number of
FN for low number of occurrences) for patterns of size 2, which we were
able to observe in experimental data (Torre et al., 2016): this is not
shown here to facilitate the comparison to Figs. 6 and 7 of Quaglio et al.
(2017).

5. Software implementation

The SPADE method (2d and 3d) is available in the
Electrophysiology Analysis Toolkit3 (Elephant, RRID:SCR_003833), an
open source Python library providing methods for the analysis of
electrophysiological data (e.g., parallel spike data, local field poten-
tials) that includes user documentation and an extensive repertoire of
unit tests of the analysis methods. Elephant builds on the Neo library4

(RRID:SCR_000634) (Garcia et al., 2014) which provides a generic data
representation for electrophysiological data and supports a large
number of file formats, thus facilitating the practical application of
SPADE. For the usage of SPADE we refer to the Elephant documenta-
tion5. The module contains the main function that
performs the analysis. It takes as arguments a list of parallel spike train
objects and a set of analysis parameters (e.g. the bin size, the length of
the analysis window length, the significance threshold, 2d or 3d version
of the method). The function returns the list of found patterns (either all
the mined patterns, or only the significant patterns) and, optionally, the
p-value spectrum and the list of non-significant signatures. Each ele-
ment of the list of found patterns is a dictionary of all features identi-
fying a pattern (neurons involved, number of occurrences, occurrence
times, temporal lags between the pattern spikes and p-values).

To perform the pattern mining, by default SPADE employs a C++
implementation6 of the FP-growth algorithm for FIM developed by

3 http://python-elephant.org.
4 http://neuralensemble.org/neo.
5 https://elephant.readthedocs.io/en/latest/reference/spade.html.
6 http://www.borgelt.net/pyfim.html.

A. Stella, et al.

Borgelt (2012). Alternatively, a Python-based implementation of the
FCA algorithm for FIM can be selected as the mining algorithm (Fast
FCA by Lindig (2000)), which can be used in case of machine in-
compatibility of the external FIM C++ module. The implementation of
SPADE also supports parallel computer environments by executing the
script calling the function using Open MPI7. Then
distributes the pattern extraction from the surrogate data for computing
the p-value spectrum on all available cores.

The listing in Fig. 5 shows an example Python code demonstrating
the use of the function from Elephant in order to run the
analysis with a data set of parallel spike trains. In this minimal example
we analyze 10 independent Poisson spike trains, generated by em-
ploying the Elephant library.

5.1. Profiling of the computational performance

For profiling the SPADE code we register the compute times for some
components of SPADE of which we know that they are time intensive.
Also we aim to test if there is an increase of the compute time due to the
use of 3d-SPADE. We show the compute times of the different im-
plementations of the FIM algorithm (FP-growth in C++ and Fast-FCA in
Python), but also for the complete SPADE analysis, i.e. 2d- and 3d-
SPADE, each with the two FIM implementations. For these six cases we
profiled the compute time under variation of three typical data para-
meters, i.e. firing rates, total duration of the data, number of parallel
spike trains. For doing that we analyze simulated independent Poisson
spike trains (no patterns injected) of different parameter constellations:

• Variation of the firing rates λ from 15 Hz to 75 Hz for all N= 100
spike trains of duration of T= 3 s (Fig. 6, left column).

• Variation of the duration T from 3 s to 15 s of N= 100 parallel spike

Fig. 4. Performance of 3d-SPADE in terms of FN and FP rates four types of artificial data sets. Top row: rate models for the background activity. From left to right:
stationary constant firing rate (25 Hz) for all neurons, coherent rate changes of all neurons, rate heterogeneity across neurons, and rate jump propagation across
successive groups of neurons. Second row: corresponding raster plots. Third and fourth row: FP and FN rates, respectively, obtained by injecting 50 ms-long patterns
of fixed size z (horizontal axis) and number of occurrences c (vertical axis) into the background data. Bottom: maximum of FP and FN rate per signature. Black circles
indicate entries in the matrices where the FP or FN rate is over 0.05 (arbitrary threshold). The code to reproduce this figure can be found at https://github.com/INM-
6/SPADE_applications/tree/master/validation_FPFN/code. To run the complete analysis (from generation of the artificial data, performing the SPADE analysis up to
plotting this figure) execute the contained therein.

7 https://www.open-mpi.org.

A. Stella, et al.

Fig. 5. Listing of the SPADE call using the toolbox. Minimal example of Python code to generate independent Poisson processes using Elephant, import the
function from Elephant, set the relevant parameters and analyze the generated data set.

Fig. 6. Profiling results for different components of SPADE. Run times as a function of the number of spikes Ns by varying (as shown in the respective second x-axis):
(1) the firing rates λ of the neurons (left panel, fixed number of neurons N= 100 and duration T= 3 s of the data sets), (2) the duration T of the data (central panel,
constant rate λ= 15 Hz and N= 100) and (3) the number of parallel spike trains N (right panel, λ= 15 Hz and T= 3 s). The profiling times for pattern mining using
the Python (FCA) implementation are shown in blue and for the C++ (FP-growth) implementation in orange. The profiling times of the PSF using FCA is shown for
the 2d in purple and the 3d in green, lying on top of each other. Similarly, the profiling times of the PSF using FP-growth for the 2d in light blue and the 3d in red,
again lying on top of each other. At the bottom, the same results are represented with logarithmic time axis. The complete code to reproduce this figure can be found
at https://github.com/INM-6/SPADE_applications/tree/master/validation_FPFN/code. In order to run the complete profiling (from generation of the artificial data,
performing the SPADE analysis to plotting the figure) one has to execute the contained therein.

Fig. 7. Graph of the workflow used to generate Fig. 3 using Snakemake. Diagram as generated by Snakemake from the corresponding initial run of the workflow.
Each node of the graph corresponds to one compute step (corresponding to a Python script and a set of parameters). Top node: generation of an artificial data set
(‘generate_data’). Second row: SPADE analysis (‘analyze_data’), called 10 times with different parameters (‘#’ for 2d-SPADE, ‘3d#’ for 3d-SPADE; window lengths ‘w
1’, ‘w 4’, ‘w 7’, ‘w 10’, ‘w 13’). Third row: PSF and PSR analysis (‘filter_results’). Fourth row: results are merged and the figure is generated (‘plot’). Bottom row: ‘all’
saves all results.

A. Stella, et al.

data all firing with λ = 15 Hz (Fig. 6, middle column).

• Variation of the number of parallel spike trains N from 100 to 500 of
constant duration of T= 3 s and constant firing rate for all neurons
of λ = 15 Hz (Fig. 6, right column).

For the three different data sets the total number of spikes Ns in the data
sets varied in the same range from Ns = 4500 to 22,500 (Fig. 6, top x-
axis). The variation of the respective other parameter is shown in the
lower x-axis.

We find, that the Python implementation for pattern extraction
(using FCA) is significantly slower than the C++ implementation (using
FP-Growth) (Fig. 6, bottom, blue and orange, respectively). The boot-
strap procedure used for PSF accounts for most of the compute time,
since here the mining step is repeated as often as the requested number
of surrogates (here 2000). However, this step can be trivially parallelized
by the Elephant implementation of SPADE as explained above.

The difference of compute times of 2d-SPADE and 3d-SPADE are
negligible (see Fig. 6, 2d and 3d versions for FP-growth (light blue and
red) and for Fast-FCA (purple and green)) – the plots lie on top of each
other. This is due to the fact that for both cases all patterns are extracted
from the surrogates, and then they are grouped into the 2d- or 3d-
spectrum. Thus, for both methods the mining of all closed frequent item
sets from the surrogate data requires the same compute time. The time
required for grouping into the 2d- or 3d-matrix is in both cases linear
with respect to the number of mined sets.

All these observations hold for the three different data sets, where
we varied alternatively the firing rates, the duration and the number of
neurons. Noticeably, while varying the number of neurons or the
duration of the data sets the computational time grows comparably
(Fig. 6, middle column and right column, respectively). However, on
the other hand, increasing the firing rate requires a much longer
compute time to run SPADE, in particular for the Fast-FCA (Python)
implementation. This due to the fact that in each of the sliding windows
there are more spikes, and thus enhance the compute time for ex-
tracting repeated patterns.

5.2. Workflow description

For generation of the artificial data, its analysis and the generation of
the figures of this manuscript, we used the workflow management system
Snakemake8. The implementation of a Snakemake workflow enables us
to automatically run and distribute the processes on the available cores
for the complete analysis (for the given range of parameters to scan), and
to combine the results afterwards into a single plot. See Fig. 7 as an
illustration of an example workflow (shown as a directed acyclic graph
(DAG)) used to generate Fig. 3. The data generation step is shown at the
top of the graph (‘generate data’). The individual analysis runs per
parameter (‘analyze_data spectrum’) are then distributed by the Snake-
make system to 10 parallel processes, 5 of which compute the 2d-pattern
spectrum (argument for calling the SPADE function indicated as ‘#’) and
5 others using 3d-pattern spectrum (argument indicated as ‘3d#’). The 5
runs for the 2d and the 3d version compute this step additionally for
different window lengths w (indicated as ‘w’ and a number corre-
sponding to its value for that run). After that follows for each line of
computation the PSF and PSR step (‘filter_results’), and finally all results
are merged for the generation of the result figure (‘plot’). In a last step, all
results (of the pattern spectrum, PSF and PSR filtering and the merging
steps) are collected and saved (‘all’).

The code necessary to reproduce the applications presented here are
publicly available online.9

6. Conclusions

In this paper we introduced the 3d-SPADE method for robustly
evaluating spatio-temporal spike patterns of different temporal extents
for their significance. The new method builds on 2d-SPADE, and eval-
uates patterns based on their signature, defined as a triplet given by the
number of neurons involved in the pattern, its number of occurrences,
and newly also its temporal duration. This new feature enables to detect
also patterns with long durations robustly, which would be lost if long
and short patterns are evaluated together as done in 2d-SPADE.

Due to the increase of one dimension of the signature in 3d-SPADE,
the multiple testing problem is enhanced. However, by using the
Holmes-Bonferroni correction instead of FDR (as in 2d-SPADE) the
performance with respect to the FN and FP rates is still acceptable
(below 5%), also in case of rate profiles that tend to lead to false de-
tections. Interestingly, the performance in terms of compute time of 3d-
in comparison to 2d-SPADE is not enhanced, but is still solely de-
termined by the implementation (C++ vs. Python) of the FIM analysis,
since FIM has to be applied numerous times in order to compute the
null hypothesis through surrogates. The compute time increases
roughly with the number of spikes in the data set, but has slightly
different behavior for increasing firing rates, total time of the data set,
or for larger number of parallel spike trains. Using the C++ im-
plementation of FIM, at least 500 parallel neurons can be analyzed for
spatio-temporal patterns. The compute time can be considerably de-
creased by parallelization – the more cores the faster.

To support reproducibility of research the software codes and their
respective Snakemake workflows are available for all results shown
here.

Conflict of interest

None declared.

Acknowledgements

We thank Dr. Michael Denker and Alper Yegenoglu for the support
in integrating SPADE into Elephant. Funding was received from
European Union's Horizon 2020 Framework Programme for Research
and Innovation under Specific Grant Agreement No. 785907 (Human
Brain Project SGA2), Deutsche Forschungsgemeinschaft Grants GR
1753/4-2 and DE 2175/2-1 of the Priority Program (SPP 1665) and
RTG2416 MultiSenses-MultiScales.

References

Abeles, M., 1982. Role of the cortical neuron: integrator or coincidence detector? Isr. J.
Med. Sci. 18 (1), 83–92.

Agrawal, R., Imieliński, T., Swami, A., 1993. Mining association rules between sets of
items in large databases. In: ACM. ACM Sigmod Record, vol. 22. pp. 207–216.

Bender, V.A., Bender, K.J., Brasier, D.J., Feldman, D.E., 2006. Two coincidence detectors
for spike timing-dependent plasticity in somatosensory cortex. J. Neurosci. 26 (16),
4166–4177.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 289–300.

Bienenstock, E., 1995. A model of neocortex. Network: Comput. Neural Syst. 6 (2),
179–224.

Borgelt, C., 2012. Frequent item set mining. Wiley Interdisciplinary Reviews (WIREs):
Data Mining and Knowledge Discovery, vol. 2. J. Wiley & Sons, Chichester, United
Kingdom, pp. 437–456. https://doi.org/10.1002/widm.1074.

Brette, R., 2015. Philosophy of the spike: rate-based vs. spike-based theories of the brain.
Front. Syst. Neurosci. 9, 151.

Buzsáki, G., 2004. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7 (5), 446.
Date, A., Bienenstock, E., Geman, S., 1999. A statistical technique for detection of fine

temporal structure in multi neuronal spike trains. Soc. Neurosci. Abstr. 25, 1441.
Fino, E., Paille, V., Cui, Y., Morera-Herreras, T., Deniau, J.-M., Venance, L., 2010. Distinct

coincidence detectors govern the corticostriatal spike timing-dependent plasticity. J.
Physiol. 588 (16), 3045–3062.

Garcia, S., Guarino, D., Jaillet, F., Jennings, T.R., Pröpper, R., Rautenberg, P.L., Rodgers,
C., Sobolev, A., Wachtler, T., Yger, P., et al., 2014. Neo: an object model for handling
electrophysiology data in multiple formats. Front. Neuroinform. 8, 10.

8 https://snakemake.readthedocs.io.
9 https://github.com/INM-6/SPADE_applications.

A. Stella, et al.

Grün, S., Diesmann, M., Aertsen, A., 2002a. Unitary events in multiple single-neuron
spiking activity. I. Detection and significance. Neural Comput. 14 (1), 43–80.

Grün, S., Diesmann, M., Aertsen, A., 2002b. Unitary events in multiple single-neuron
spiking activity. II. Nonstationary data. Neural Comput. 14 (1), 81–119.

Grün, S., Diesmann, M., Grammont, F., Riehle, A., Aertsen, A., 1999. Detecting unitary
events without discretization of time. J. Neurosci. Methods 94 (1), 67–79.

Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat.
65–70.

Izhikevich, E.M., 2006. Polychronization: computation with spikes. Neural Comput. 18
(2), 245–282.

Kilavik, B.E., Roux, S., Ponce-Alvarez, A., Confais, J., Grün, S., Riehle, A., 2009. Long-
term modifications in motor cortical dynamics induced by intensive practice. J.
Neurosci. 29 (40), 12653–12663.

König, P., 1994. A method for the quantification of synchrony and oscillatory properties
of neuronal activity. J. Neurosci. Methods 54 (1), 31–37.

Lindig, C., 2000. Fast concept analysis. Working with Conceptual Structures –
Contributions to ICCS 2000, 152–161.

Louis, S., Gerstein, G.L., Grün, S., Diesmann, M., 2010. Surrogate spike train generation
through dithering in operational time. Front. Comput. Neurosci. 4 (127).

Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., Buzsáki, G., 1999. Replay and time
compression of recurring spike sequences in the hippocampus. J. Neurosci. 19 (21),
9497–9507.

Pazienti, A., Maldonado, P.E., Diesmann, M., Grün, S., 2008. Effectiveness of systematic
spike dithering depends on the precision of cortical synchronization. Brain Res. 1225,
39–46.

Picado-Muiño, D., Borgelt, C., Berger, D., Gerstein, G.L., Grün, S., 2013. Finding neural
assemblies with frequent item set mining. Front. Neuroinform. 7, 9.

Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Slovin, H., Abeles, M., 1998.
Spatiotemporal structure of cortical activity: properties and behavioral relevance. J.
Neurophysiol. 79 (6), 2857–2874.

Quaglio, P., Yegenoglu, A., Torre, E., Endres, D.M., Grün, S., 2017. Detection and eva-
luation of spatio-temporal spike patterns in massively parallel spike train data with
spade. Front. Comput. Neurosci. 11, 41.

Riehle, A., Grün, S., Diesmann, M., Aertsen, A., 1997. Spike synchronization and rate

modulation differentially involved in motor cortical function. Science 278 (5345),
1950–1953.

Roy, S.A., Alloway, K.D., 2001. Coincidence detection or temporal integration? What the
neurons in somatosensory cortex are doing. J. Neurosci. 21 (7), 2462–2473.

Schwarz, D.A., Lebedev, M.A., Hanson, T.L., Dimitrov, D.F., Lehew, G., Meloy, J.,
Rajangam, S., Subramanian, V., Ifft, P.J., Li, Z., et al., 2014. Chronic, wireless re-
cordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods
11 (6), 670.

Shimazaki, H., Amari, S., Brown, E.N., Grün, S., 2012. State-space analysis of time-
varying higher-order spike correlation for multiple neural spike train data. PLoS
Comput. Biol. 8 (3), e1002385.

Steinmetz, N.A., Koch, C., Harris, K.D., Carandini, M., 2018. Challenges and opportunities
for large-scale electrophysiology with neuropixels probes. Curr. Opin. Neurobiol. 50,
92–100.

Swadlow, H.A., 1988. Efferent neurons and suspected interneurons in binocular visual
cortex of the awake rabbit: receptive fields and binocular properties. J. Neurophysiol.
59 (4), 1162–1187.

Swadlow, H.A., 1994. Efferent neurons and suspected interneurons in motor cortex of the
awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic
inputs. J. Neurophysiol. 71 (2), 437–453.

Swadlow, H.A., 1998. Neocortical efferent neurons with very slowly conducting axons:
strategies for reliable antidromic identification. J. Neurosci. Methods 79, 131–141.

Torre, E., Picado-Mui no, D., Denker, M., Borgelt, C., Grün, S., 2013. Statistical evaluation
of synchronous spike patterns extracted by frequent item set mining. Front. Comput.
Neurosci. 7, 132.

Torre, E., Quaglio, P., Denker, M., Brochier, T., Riehle, A., Grün, S., 2016. Synchronous
spike patterns in macaque motor cortex during an instructed-delay reach-to-grasp
task. J. Neurosci. 36 (32), 8329–8340.

Wille, R., 1982. Restructuring lattice theory: an approach based on hierarchies of con-
cepts. Ordered Sets. Springer, pp. 445–470.

Yegenoglu, A., Quaglio, P., Torre, E., Grün, S., Endres, D., 2016. Exploring the usefulness
of formal concept analysis for robust detection of spatio-temporal spike patterns in
massively parallel spike trains. In: International Conference on Conceptual
Structures. Springer. pp. 3–16.

A. Stella, et al.

