000865012 001__ 865012
000865012 005__ 20210130002821.0
000865012 0247_ $$2doi$$a10.1093/jxb/erz060
000865012 0247_ $$2ISSN$$a0022-0957
000865012 0247_ $$2ISSN$$a1460-2431
000865012 0247_ $$2Handle$$a2128/22704
000865012 0247_ $$2altmetric$$aaltmetric:55772978
000865012 0247_ $$2pmid$$apmid:30799498
000865012 0247_ $$2WOS$$aWOS:000483174300016
000865012 037__ $$aFZJ-2019-04577
000865012 082__ $$a580
000865012 1001_ $$00000-0002-9828-9679$$aKoch, Axelle$$b0
000865012 245__ $$aFunctional–structural root-system model validation using a soil MRI experiment
000865012 260__ $$aOxford$$bOxford Univ. Press$$c2019
000865012 3367_ $$2DRIVER$$aarticle
000865012 3367_ $$2DataCite$$aOutput Types/Journal article
000865012 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568028368_22205
000865012 3367_ $$2BibTeX$$aARTICLE
000865012 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865012 3367_ $$00$$2EndNote$$aJournal Article
000865012 520__ $$aFunctional–structural root-system models simulate the relations between root-system architectural and hydraulic properties, and the spatio-temporal distributions of water and solutes in the root zone. Such models may help identify optimal plant properties for breeding and contribute to increased water-use efficiency. However, it must first be demonstrated that they accurately reproduce the processes they intend to describe. This is challenging because the flow and transport processes towards individual roots are hard to observe. In this study, we demonstrate how this problem can be addressed by combining co-registered root and tracer distributions obtained from magnetic resonance imaging with a root-system model in an inverse modeling scheme. The main features in the tracer distributions were well reproduced by the model using realistic root hydraulic parameters. By combining the functional–structural root-system model with 4D tracer observations, we were able to quantify the water uptake distribution of a growing root system. We determined that 76% of the transpiration was extracted through 3rd-order roots. The simulations also demonstrated that accurate water uptake distribution cannot be directly derived either from observations of tracer accumulation or from water depletion. However, detailed tracer experiments combined with process-based models help decipher mechanisms underlying root water uptake.
000865012 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000865012 588__ $$aDataset connected to CrossRef
000865012 7001_ $$00000-0003-2486-309X$$aMeunier, Félicien$$b1
000865012 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b2
000865012 7001_ $$0P:(DE-Juel1)129457$$aGarre, Sarah$$b3
000865012 7001_ $$0P:(DE-Juel1)129521$$aPohlmeier, Andreas$$b4
000865012 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b5$$eCorresponding author
000865012 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/erz060$$gVol. 70, no. 10, p. 2797 - 2809$$n10$$p2797 - 2809$$tThe journal of experimental botany$$v70$$x1460-2431$$y2019
000865012 8564_ $$uhttps://juser.fz-juelich.de/record/865012/files/erz060-1.pdf$$yOpenAccess
000865012 8564_ $$uhttps://juser.fz-juelich.de/record/865012/files/erz060-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865012 909CO $$ooai:juser.fz-juelich.de:865012$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000865012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b2$$kFZJ
000865012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129457$$aForschungszentrum Jülich$$b3$$kFZJ
000865012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129521$$aForschungszentrum Jülich$$b4$$kFZJ
000865012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b5$$kFZJ
000865012 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000865012 9141_ $$y2019
000865012 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865012 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000865012 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865012 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865012 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EXP BOT : 2017
000865012 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EXP BOT : 2017
000865012 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865012 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865012 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865012 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000865012 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865012 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865012 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000865012 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865012 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000865012 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865012 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000865012 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000865012 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865012 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000865012 980__ $$ajournal
000865012 980__ $$aVDB
000865012 980__ $$aUNRESTRICTED
000865012 980__ $$aI:(DE-Juel1)IBG-3-20101118
000865012 9801_ $$aFullTexts