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We evaluate the rates of energy and phase relaxation of a superconducting qubit caused by stray photons

with energy exceeding the threshold for breaking a Cooper pair. All channels of relaxation within this

mechanism are associated with the change in the charge parity of the qubit, enabling the separation of

the photon-assisted processes from other contributions to the relaxation rates. Among the signatures of the

new mechanism is the same order of rates of the transitions in which a qubit loses or gains energy, which is

in agreement with recent experiments. Our theory offers the possibility to characterize the electromagnetic

environment of superconducting devices at the single-photon level for frequencies above the super-

conducting gap.

DOI: 10.1103/PhysRevLett.123.107704

Introduction.—The electromagnetic environment is

known to affect the operation of any superconducting

device based on tunnel junctions [1–3] through photon-

assisted tunneling [4]. The spectral content and origin of

this environment are not known a priori. This is why

phenomenological approaches, such as the PðEÞ theory [5],
are conventionally used to model (but not explain) the

environment. In this work, we give a route towards its

characterization at the single-photon level. Namely, we

consider the photon-induced relaxation of superconducting

qubits in the circuit-QED setting [6–11]. We find that

measuring it actually opens—with the help of our theory—

an experimental path for acquiring information on the

environment by focusing on its high-frequency component.

When a Josephson junction absorbs a photon with

energy ℏω > 2Δ capable of breaking a Cooper pair, a

single electron is transferred across the junction (here, Δ is

the BCS energy gap). If the junction is a part of a

superconducting qubit, such an e jump can be detected

by monitoring the charge parity of the device [12–16]. An e
jump may also result in a transition to a different qubit state,

and we evaluate the rates of all transitions that change

charge parity. We find that the transition rates for the

photon-assisted e jumps differ qualitatively from those

initiated by steady-state quasiparticles residing in the

electrodes [17–23]. The rates thus provide a clear finger-

print of the absorbed photon. Moreover, in the popular

transmon design, a small Josephson junction is located

inside a microwave cavity. Photons are brought inside the

cavity through coaxial cables, and their electric field is

concentrated at the junction. Therefore, a single photon

turns out to be way more effective than a resident

quasiparticle in causing the e jumps and, in turn, causes

energy and phase-coherence relaxation associated with

them in state-of-the-art devices. Recent experiments per-

formed with transmons have directly correlated qubit

transitions with e jumps [13,15]. Our theory explains the

experimental findings [15].

Photon-assisted e-jump rates.—The role of quasipar-

ticles in an elementary superconducting qubit is captured

by the electronic Hamiltonian

Ĥel ¼ Ĥφ þ Ĥqp þ ĤT : ð1Þ

The first term here describes the quantum dynamics of

the superconducting phase difference across a Josephson

junction,

Ĥφ ¼ 4ECðN̂ − ngÞ2 − EJ cos φ̂þ 1

2
ELðφ̂ − 2πΦe=Φ0Þ2;

ð2Þ

where φ̂ and N̂ ¼ −id=dφ̂ are canonically conjugate

quantum variables describing the superconducting phase

difference and the number of Cooper pairs that tunneled

across the junction, respectively; EJ and 4EC are the

Josephson and charging energies associated with these

two variables; and ng is a dimensionless gate voltage that

accounts for offset charges. The inductive shunt of a

fluxonium [24] is described by the last term in Eq. (2);

its presence allows one to use an external magnetic flux Φe

to tune the qubit levels (Φ0 is the superconducting flux

quantum). A transmon does not have a shunt; EL ¼ 0. Our

theory is equally applicable to any device. The eigenstates

of Eq. (2) are the qubit states jni with energy En. The

second term in Eq. (1) describes quasiparticles residing in

the superconducting leads,
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Ĥqp ¼
X

kσ

εkα̂
†

kσα̂kσ þ
X

pσ

εpγ̂
†
pσ γ̂pσ: ð3Þ

Here, α̂kσ is a fermionic annihilation operator for a

Bogoliubov quasiparticle in orbital state k and with spin

σ in one of the leads, and γ̂pσ plays a similar role for a

quasiparticle in the other lead (σ ¼ � for up and down

spins); the quasiparticle energy εk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2k þ Δ
2

q

is

expressed in terms of the normal-state electron energy ξk
measured from the Fermi level. Finally, the third term in

Eq. (1) describes electron tunneling across the junction,

ĤT ¼
X

kpσ

½teiφ̂=2â†kσ ĉpσ þ H:c:� þ EJ cos φ̂; ð4Þ

it accounts for the coupling between φ̂ and quasiparticle

degrees of freedom. Here, the tunnel matrix element t is
related to EJ through the Ambegaokar-Baratoff relation

EJ ¼ gTΔ=4, where gT ¼ 4π2ν20jtj2 is the conductance of

the junction in the normal state (in units of e2=πℏ) and ν0 is

the normal density of states per spin. The operator âkσ ¼
ukα̂kσ þ σvkα̂

†

kσ̄ (with σ̄ ¼ −σ) annihilates an electron in

one of the leads, and uk, vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� ξk=εkÞ=2
p

are BCS

coherence factors (relations for the electron annihilation

operator ĉpσ in the other lead are similar). The last term in

Eq. (4) is included to avoid double counting the Josephson

energy term appearing in Eq. (2) [19].

The coupling of the electronic degrees of freedom to

an electromagnetic mode in the cavity is described by the

Hamiltonian

Ĥ ¼ Ĥcav þ Ĥel; Ĥcav ¼ ℏωνb̂
†
νb̂ν; ð5Þ

provided that we make the substitution

φ̂ → φ̂þ ϕνðb̂ν þ b̂†νÞ with ϕν ¼ 2eUν=ðℏωνÞ ð6Þ

in Ĥel. Here, b̂ν is the bosonic annihilation operator for a

cavity mode ν with frequency ων and an operator of the

electric field ÊðrÞ ¼ −iEνðrÞðb̂ν − b̂†νÞ. The “zero-point

fluctuation” of the phase, ϕν, and voltage drop, Uν, across

the Josephson junction are proportional to the electric field

EνðrÞ; for definiteness, we relate Uν to the field value at the

junction, Uν ¼ dνEνð0Þ. In general, the effective length dν
depends not only on the specific geometry of the qubit but

also on the frequency ων. Inserting the substitution rule

[Eq. (6)] into Eq. (4) and accounting for the weakness

of coupling (ϕν ≪ 1), we express the Hamiltonian of the

quasiparticle-photon-qubit interaction as

δĤT ¼ iϕν

2
ðb̂ν þ b̂†νÞðV̂1 þ V̂2Þ þ H:c:;

V̂1 ¼ t
X

kpσ

ðeiφ̂=2ukup þ e−iφ̂=2vkvpÞα̂†kσ γ̂pσ;

V̂2 ¼ t
X

kpσ

σðeiφ̂=2ukvp − e−iφ̂=2vkupÞα̂†kσ γ̂†pσ̄: ð7Þ

Treating δĤT as a perturbation to Ĥ0 ¼ Ĥφ þ Ĥqp þ Ĥcav,

and assuming a vanishing occupation of the quasiparticle

states to neglect V̂1, we can use the Fermi’s golden rule to

evaluate the rate for absorbing a cavity photon while

changing the qubit state from n to m,

Γnm ¼ 2π

ℏ

�

ϕν

2

�

2X

kpσ

jhvac; mjα̂kσ γ̂pσ̄V̂2jvac; nij2

× δðℏων þ En − Em − εk − εpÞ; ð8Þ

where jvac; ni ¼ jvaci ⊗ jni is the product of the BCS

ground state and the qubit state. Evaluating the sums in

Eq. (8), we can express the e-jump rates [Eq. (8)] as

Γnm ¼ Γν

��

�

�

�

hnj cos φ̂
2
jmi

�

�

�

�

2

S−

�

ℏων þ En − Em

Δ

�

þ
�

�

�

�

hnj sin φ̂
2
jmi

�

�

�

�

2

Sþ

�

ℏων þ En − Em

Δ

��

ð9Þ

with the common characteristic scale

ℏΓν ¼
2

π

�

2eUν

ℏων

�

2

EJ ð10Þ

for the photon absorption. Quasiparticle properties are

represented by the dimensionless structure factor functions

having a threshold at ℏω=Δ≡ x ¼ 2,

S�ðxÞ ¼
Z

∞

1

dy

Z

∞

1

dy0
yy0 � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

y02 − 1
p δðx − y − y0Þ;

ð11Þ

2 3 4 5 6 7

0

1
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7

FIG. 1. Quasiparticle structure factors Sþ (solid line) and S−
(dashed line) as functions of energy at ℏω ≥ 2Δ.
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see Fig. 1. Their asymptotes are S−ðxÞ ¼ ðπ=2Þðx − 2Þ,
SþðxÞ ¼ π þ S−ðxÞ=2 at x − 2 ≪ 2, and S�ðxÞ ≈ x at

x ≫ 2. The prefactors of S�ðxÞ inside the brackets of

Eq. (9) are matrix elements for the transitions between

qubit states. Although these matrix elements also enter into

e-jump rates due to residual quasiparticles, the correspond-

ing structure factor functions are different [23].

At EJ ≫ EC, Eq. (2) describes a weakly anharmonic

oscillator for which the phase displays small quantum

fluctuations around the classical phase φ0. At finite EL, it

may be tuned away from zero by an external flux Φe and

found as the solution of the equation EJ sinφ0 þ
ELðφ0 − 2πΦe=Φ0Þ ¼ 0, which yields the minimum of

(classical) energy. In the harmonic approximation, Eq. (2)

reduces to Ĥ0
φ ¼ 4ECðN̂ − ngÞ2 þ ẼJðφ̂ − φ0Þ2=2 with

ẼJ ¼ EJ cosφ0 þ EL. The weak anharmonicity singles

out the ground and excited states of the qubit. Retaining

only the lowest-order correction in ðEC=ẼJÞ1=2, one obtains
ℏω01 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8ẼJEC

p

− EC for the corresponding transition

frequency. Evaluation of the qubit matrix elements in

Eq. (9) within the leading order [25] in ðEC=ẼJÞ1=2 yields

Γ00 ¼ Γ11 ¼ Γν

�

1þ cosφ0

2
S−

�

ℏων

Δ

�

þ 1 − cosφ0

2
Sþ

�

ℏων

Δ

��

; ð12aÞ

Γ01 ¼ Γν

ffiffiffiffiffiffiffiffi

EC

8ẼJ

s

�

1þ cosφ0

2
Sþ

�

ℏων − ℏω01

Δ

�

þ 1 − cosφ0

2
S−

�

ℏων − ℏω01

Δ

��

; ð12bÞ

Γ10 ¼ Γν

ffiffiffiffiffiffiffiffi

EC

8ẼJ

s

�

1þ cosφ0

2
Sþ

�

ℏων þ ℏω01

Δ

�

þ 1 − cosφ0

2
S−

�

ℏων þ ℏω01

Δ

��

: ð12cÞ

The φ0 dependence of the rates in Eq. (12) reveals the

interference between quasiparticles crossing the junction in

the photon-absorption process. It is reminiscent of the cosφ

effect in the dissipative Josephson current [26] and flux-

dependent fluxonium relaxation rates [27]. At EL ≠ 0, ω01

is independent of ng, which can be gauged out from H0
φ.

Sensitivity of the qubit energy levels to the gate voltage is

useful for separating out the rates of various e-jump

processes [13,15]. The φ0 dependence of the rates in

Eq. (12) may be investigated in a device retaining such

sensitivity, e.g., in a flux qubit [14,28].

Let us make several observations. First, at a large

frequency ℏων ≫ 2Δ, the transition rates are independent

of φ0, and we find Γ01=Γ10 ≈ 1 and

Γ00=Γ10 ¼ ð8ẼJ=ECÞ1=2: ð13Þ

Notably, rates Γ00 and Γ11, in which a qubit state does not

change, are substantially larger than Γ01 and Γ10.

Furthermore, at φ0 ¼ 0 and ℏω01 ≪ Δ, we find

1 − ℏω01=Δ < Γ01=Γ10 < 1 ð14Þ

at any frequency above the threshold: ℏων > 2Δþ ℏω01.

Finally, at ℏων close to the threshold, the large factor in

Eq. (13) is compensated for by a small factor from S−ðxÞ,
resulting in

Γ00

Γ10

≈

�

2ẼJ

EC

�

1=2
�

ℏων

Δ
− 2

�

at ℏων − 2Δ ≪ Δ: ð15Þ

The characteristic rate Γν of Eq. (10) depends on the

qubit parameter dν and the amplitude of the quantized

electric field Eν. To estimate the two, we notice that, in

conventional 3D designs [8], the superconducting circuit is

oriented along the shortest direction of a 3D electromag-

netic cavity: say, with a width Lz along the z direction

much smaller than the characteristic transverse sizes: Lx,

Ly ≫ Lz. Therefore, the electric field at frequencies smaller

than πc=Lz (c is the light velocity) is expressed in terms

of the TE modes,

Ê ¼ −i
X

ν

ðb̂ν − b̂†νÞEνðx; yÞẑ; ð16Þ

and is independent of z, apart from the vicinity of the

qubit and rf input or output connectors constituting

perturbing metallic boundary conditions inside the cavity.

Furthermore, Eνðx; yÞ is a real solution of the equation

½ω2
ν þ c2ð∂2

x þ ∂2
yÞ�Eνðx; yÞ ¼ 0 ð17Þ

at frequency ων in the transverse ðx; yÞ plane, which is

complemented with the appropriate nonradiative boundary

conditions defined by the cavity walls and the above-

mentioned perturbations in the cavity. Because the pertur-

bations occupy a tiny fraction of the cavity volume, we may

disregard them in the normalization condition to obtain
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E2
ν ¼ 2πℏων=ðALzÞ: ð18Þ

Here, E2
ν ¼ ð1=AÞ

R

d2rE2
νðx; yÞ, and A is the cavity’s

transverse area.

Given the presence of perturbations, we expect that the

boundary conditions associated with Eq. (17) will yield a

chaotic behavior for its solutions [29]. The spacing of

eigenfrequencies around a given frequency ων is estimated

as δω ¼ c2=ðAωνÞ. Then, the amplitude of the electric field

at the qubit position will fluctuate from mode to mode. We

may use the random matrix theory (RMT) [30] to describe

these fluctuations in a range of frequencies of the order

c=
ffiffiffiffi

A
p

around a frequency ων such that c=
ffiffiffiffi

A
p

≪ ων≲

πc=Lz, where πc=Lz is the cutoff frequency for the TM

modes. Therefore, the amplitude of the electric field at a

given position is given by the Porter-Thomas distribution in

the orthogonal ensemble,

PðE2
νÞdE2

ν ¼ ð2πE2
νhE2

νiÞ−1=2 expð−E2
ν=2hE2

νiÞdE2
ν; ð19Þ

where the brackets denote the ensemble average. For the

modes ν that can be described with the RMT, the spatial and

ensemble averages equal each other: hE2
νi ¼ E2

ν.

The effective length dν, which characterizes the coupling
between the superconducting circuit and the electric field,

is frequency independent in a wide frequency range. This

range is limited by the requirement that the size of the

superconducting circuit is smaller than the wavelength of

the photon λν ¼ 2πc=ων, whereas the inductance LJ ¼
ℏ
2=ð4e2EJÞ of the Josephson junction is high enough to

treat it as an open circuit: LJων ≫ Zvac (here, Zvac is the

vacuum impedance). For a typical design, the frequency of

stray photons with ℏω ∼ 2Δ falls below the upper limit set

by the former condition; the much lower transition fre-

quency ω01 exceeds the lower limit set by the latter

condition, as long as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EC=ẼJ

p

≫ α (here, α ¼ e2=ℏc is

the fine structure constant). We may extract the frequency-

independent dν ≡ d from the dispersive shift measured at

the resonator’s principal mode frequency ωr, which is

close to ω01. Indeed, ignoring the role of quasiparticles

and projecting the Hamiltonian (5) onto the lower-energy

states of the qubit yields

Ĥ ¼ ℏωrb̂
†
r b̂r þ

ℏω01

2
σz þ ℏgðb̂r þ b̂†rÞσx; ð20Þ

where

g ¼ 1

ℏ
ð2ECẼ

3
JÞ1=4

2edEr

ℏωr

ð21Þ

is the “vacuum Rabi frequency” [31], and σx and σz are

Pauli matrices acting in the two-dimensional space of qubit

states. Combining Eqs. (10), (18), and (21) then yields

Γν ¼
4

π

g2

ω01

ωr

ων

EJ

ẼJ

�

E2
rðx; yÞ
Ē2
r

�

−1 E2
νðx; yÞ
Ē2
ν

; ð22Þ

where ðx; yÞ is the vicinity of the qubit location. Using the

standard expression for the principal mode in a rectangular

cavity, and assuming that the qubit is positioned near the

cavity’s center, allows us to estimate E2
rðx; yÞ=E2

r ≈ 4. The

ensemble-averaged value of Eq. (22) is then

hΓνi ¼
Δ

ℏων

Γ0; Γ0 ¼
1

π

g2

ω01

ℏωr

Δ

EJ

ẼJ

: ð23Þ

In the two-level approximation for the qubit states, g is

related to the dispersive shift of the qubit transition

frequency: χ ¼ g2=jωr − ω01j. Equations (12) and (23)

express the main result of this work.

e jumps in transmons.—From now on, we specify the

discussion to transmons, such that ẼJ ¼ EJ and φ0 ¼ 0.

There are two aspects in which the rates of charge-parity

transitions caused by photons differ qualitatively from

those caused by the quasiparticles resident in the qubit.

First, it is the approximately equal rates of transitions

accompanied by the qubit energy loss or gain: Γ01 ≈ Γ10;

see Eq. (14). To the contrary, the resident quasiparticles

mechanism [23] leads to Γ01 ≪ Γ10, even if their energy

distribution is out of equilibrium [32]. Second, the ratio

Γ00=Γ10 is large; see Eq. (13). In contrast, the quasiparticle

tunneling mechanism yields a parametrically smaller result

[23], differing from Eq. (13) by an additional factor of

ðℏω01Tqp=πΔ
2Þ1=2 ≪ 1; here, Tqp ≪ Δ is the effective

temperature of the quasiparticles.

A single photon with energy ℏω > 2Δ is much more

effective in causing decoherence than the residual quasi-

particle density in a typical setting. This efficiency is a

byproduct of the efficient coupling between the super-

conducting circuit and the electromagnetic cavity in the

transmon design. The quasiparticle mechanism [17] yields

Γ
qp
10 ¼ xqp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Δω01=π
2ℏ

p

, where xqp ¼ nqp=ð2ν0ΔÞ is the

quasiparticle density in units of the density of Cooper pairs.

We compare the effectiveness of a single photon with that

of quasiparticles by equating hΓ10i ¼ Γ
qp
10 and finding the

corresponding xeffqp ,

xeffqp ¼
ffiffiffi

2
p

π2α

ffiffiffiffiffiffiffiffiffiffi

ℏω01

Δ

r

d2λν

ALz

: ð24Þ

For a typical device [31], this yields xeffqp ∼ 5 × 10−5 much

larger than the typical residual density [8] of ≲10−6.

Comparison with experiment.—Photon-assisted e jumps

provide a natural explanation for the results of the recent

experiment [15]. In [15], the rates of the e jumps accom-

panied by qubit excitation and relaxation, respectively,

were approximately equal each other. This observation is

PHYSICAL REVIEW LETTERS 123, 107704 (2019)

107704-4



consistent with Eq. (14) and hints at a finite probability nν
of finding a high-energy photon in the cavity. Furthermore,

we may associate the observed rate of e jumps occurring

without the qubit leaving the ground state with the rate

of nνΓ00, whereas the above-mentioned measured rate of

1 → 0 transitions is associated with nνΓ10, cf. Eqs. (12a)

and (12c) with φ0 ¼ 0. Comparing the ratio of the two with

the experimental data, we obtain the relation Γ00=Γ10 ≈ 4.1,

which we treat as an equation for finding the characteristic

photon frequency. Using the qubit parameters [31], we find

ων ≈ 2.8Δ=ℏ. Then, inserting this frequency into the ratio

of rates (12b) and (12c) yields Γ01=Γ10 ≈ 0.97, which is

close to the observed ratio between the qubit relaxation and

excitation rates (accompanied by e jumps).

To assess the individual rates (rather than their ratios), we

assume the incoming photons belong to a narrow (compared

to ων) bandwidth around the frequency ων. We also assume

this bandwidth is wide as compared to the mean-frequency

spacing δω, which allows us to substituteΓν in Eq. (12) by its

ensemble-averaged value, cf. Eq. (23). [In the opposite

case of a narrow frequency bandwidth ≪ δω, all rates in

Eq. (12)would fluctuate frommode tomode according to the

Porter-Thomas distribution, cf. Eq. (19); we note also that

frequencies ℏων ∼ 2Δ for the device parameters [31] are at

the margin of validity of the condition ων ≲ πc=Lz used to

retain TE modes only in Eq. (16).] Inserting the device

parameters [31] into Eq. (23), we find Γ
−1
0 ≈ 0.6 μs. The

measurede-jumpratesaremuch lower.This indicates that the

measured rates are actually controlled by the probability for a

photon to enter the cavity. The sum of all measured e-jump

rates then yields the rate with which photons appear in

the cavity: dnν=dt ¼ 1=TP with TP ¼ 77 μs [15]. Using

this value, qubit-state probabilities P0 ≈ P1 ≈ 1=2, and the

estimated Γ0 in equation

dnν=dt ¼ nν
X

n;m¼0;1

PnhΓnmi; ð25Þ

we find the photon occupation factor nν ≈ 10−2.

Alternatively, we may consider e jumps caused by a

distribution of photons coming into the cavity from an

outside thermal bath (instead of photons within a narrow

frequency band). In this case, the magnitude of the e-jump

rates depends on the coupling parameters between the

cavity modes and the outside bath, which may depend on

the frequency of incoming photons. Neglecting such

dependence, the poorly known coupling parameter cancels

out in the ratios between rates. In the following estimates,

we consider the effect of external irradiation from a thermal

bath at temperature Tb. Convolving the frequency-resolved

rates (12) with the Bose-Einstein distribution and the

density of modes, and assuming ℏω01, Tb ≪ 2Δ, we find

Γ00=Γ10 ≈

ffiffiffiffiffiffiffiffi

2EJ

EC

s

Tb

Δ
expð−ℏω01=TbÞ; ð26aÞ

Γ01=Γ10 ≈ expð−2ℏω01=TbÞ: ð26bÞ

Let us note a poor agreement of the data [15] with such

a uniformly attenuated thermal photons model. Indeed,

equating Eq. (26a) with the corresponding observed ratio

together with device parameters [31] yields Tb ≈ 0.68Δ.

Inserting this temperature into Eq. (26b) then yields a ratio

of Γ01=Γ10 ≈ 0.77, which is about 30% lower than the

observed one. Therefore, we favor the first explanation

involving photons in a relatively narrow frequency band.

Conclusion.—We have identified a decoherence channel

associated with an event of photon-assisted electron tun-

neling through a Josephson junction in a superconducting

qubit. This process results from the breaking of a Cooper

pair by a stray photon with energy exceeding 2Δ and with

an electric field that is concentrated at a high-impedance

junction. The qubit transition rates accompanying these

photon-assisted e jumps are markedly different from those

caused by residual quasiparticles. They are consistent with

the measured rates in Ref. [15], where charge-parity

switches were equally likely to excite or relax the transmon.

Interestingly, we find that the contribution per high-fre-

quency photon in the cavity to qubit decoherence (through

energy relaxation) is similar to that of low-frequency

photons (through shot-noise dephasing [33]). However,

this similarity depends on the particulars of the present

implementation of the qubit-cavity system. Unsurprisingly,

our results reinforce the importance of protecting super-

conducting qubits from electromagnetic radiation at all

frequencies. Additionally, the control of processes unveiled

in this Letter may open a perspective for the design of

single-photon microwave detectors for frequencies above

the gap.
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