001     865017
005     20240708132808.0
024 7 _ |a 10.1016/j.jeurceramsoc.2019.07.045
|2 doi
024 7 _ |a 0267-3762
|2 ISSN
024 7 _ |a 1878-2892
|2 ISSN
024 7 _ |a WOS:000488140300006
|2 WOS
037 _ _ |a FZJ-2019-04582
082 _ _ |a 660
100 1 _ |a Gibson, J. S. K.-L.
|0 0000-0002-2274-4057
|b 0
|e Corresponding author
245 _ _ |a Mechanical characterisation of the protective Al2O3 scale in Cr2AlC MAX phases
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660803911_15506
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a MAX phases have great potential under demands of both high-temperature and high-stress performance, with their mixed atomic bonding producing the temperature and oxidation resistance of ceramics with the mechanical resilience of metals.Here, we measure the mechanical properties up to 980C by nanoindentation on highly dense and pure Cr2AlC, as well as after oxidation with a burner rig at 1200 °C for more than 29 h. Only modest reductions in both hardness and modulus up to 980 °C were observed, implying no change in deformation mechanism.Furthermore, micro-cantilever fracture tests were carried out at the Cr2AlC/Cr7C3 and Cr7C3/Al2O3 interfaces after the oxidation of the Cr2AlC substrates with said burner rig. The values are typical of ceramic-ceramic interfaces, below 4 MPa, leading to the hypothesis that the excellent macroscopic behaviour is due to a combination of low internal strain due to the match in thermal expansion coefficient as well as the convoluted interface.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gonzalez-Julian, J.
|0 P:(DE-Juel1)162271
|b 1
700 1 _ |a Krishnan, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vaßen, R.
|0 P:(DE-Juel1)129670
|b 3
700 1 _ |a Korte-Kerzel, S.
|0 0000-0002-4143-5129
|b 4
773 _ _ |a 10.1016/j.jeurceramsoc.2019.07.045
|g p. S0955221919305321
|0 PERI:(DE-600)2013983-4
|n 16
|p 5149-5155
|t Journal of the European Ceramic Society
|v 39
|y 2019
|x 0955-2219
909 C O |p VDB
|o oai:juser.fz-juelich.de:865017
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21