000865060 001__ 865060
000865060 005__ 20210130002857.0
000865060 0247_ $$2doi$$a10.1038/s41535-019-0179-7
000865060 0247_ $$2Handle$$a2128/22731
000865060 0247_ $$2altmetric$$aaltmetric:64865570
000865060 0247_ $$2WOS$$aWOS:000493556200001
000865060 037__ $$aFZJ-2019-04622
000865060 082__ $$a530
000865060 1001_ $$0P:(DE-HGF)0$$aSchneider, Lucas$$b0
000865060 245__ $$aMagnetism and in-gap states of 3d transition metal atoms on superconducting Re
000865060 260__ $$a[London]$$bNature Publishing Group$$c2019
000865060 3367_ $$2DRIVER$$aarticle
000865060 3367_ $$2DataCite$$aOutput Types/Journal article
000865060 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581690854_18304
000865060 3367_ $$2BibTeX$$aARTICLE
000865060 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865060 3367_ $$00$$2EndNote$$aJournal Article
000865060 520__ $$aMagnetic atoms on heavy-element superconducting substrates are potential building blocks for realizing topological superconductivity in one- and two-dimensional atomic arrays. Their localized magnetic moments induce so-called Yu-Shiba-Rusinov (YSR) states inside the energy gap of the substrate. In the dilute limit, where the electronic states of the array atoms are only weakly coupled, proximity of the YSR states to the Fermi energy is essential for the formation of topological superconductivity in the band of YSR states. Here, we reveal via scanning tunnel spectroscopy and ab initio calculations of a series of 3d transition metal atoms (Mn, Fe, Co) adsorbed on the heavy-element superconductor Re that the increase of the Kondo coupling and sign change in magnetic anisotropy with d-state filling is accompanied by a shift of the YSR states through the energy gap of the substrate and a crossing of the Fermi level. The uncovered systematic trends enable the identification of the most promising candidates for the realization of topological superconductivity in arrays of similar systems
000865060 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000865060 536__ $$0G:(EU-Grant)681405$$aDynasore - Dynamical magnetic excitations with spin-orbit interaction in realistic nanostructures (681405)$$c681405$$fERC-2015-CoG$$x1
000865060 536__ $$0G:(DE-Juel1)jara0189_20180501$$aFirst-principles investigation of single magnetic nano-skyrmions (jara0189_20180501)$$cjara0189_20180501$$fFirst-principles investigation of single magnetic nano-skyrmions$$x2
000865060 536__ $$0G:(DE-Juel1)jias17_20150501$$aFirst-principles investigation of single magnetic nano-skyrmions (jias17_20150501)$$cjias17_20150501$$fFirst-principles investigation of single magnetic nano-skyrmions$$x3
000865060 588__ $$aDataset connected to CrossRef
000865060 7001_ $$00000-0003-3250-402X$$aSteinbrecher, Manuel$$b1
000865060 7001_ $$00000-0001-9456-5755$$aRózsa, Levente$$b2
000865060 7001_ $$0P:(DE-Juel1)157840$$aBouaziz, Juba$$b3$$ufzj
000865060 7001_ $$00000-0002-1914-2901$$aPalotás, Krisztián$$b4
000865060 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, Manuel$$b5
000865060 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b6
000865060 7001_ $$00000-0003-1668-6142$$aWiebe, Jens$$b7$$eCorresponding author
000865060 7001_ $$0P:(DE-HGF)0$$aWiesendanger, Roland$$b8
000865060 773__ $$0PERI:(DE-600)2882263-8$$a10.1038/s41535-019-0179-7$$gVol. 4, no. 1, p. 42$$n1$$p42$$tnpj quantum materials$$v4$$x2397-4648$$y2019
000865060 8564_ $$uhttps://juser.fz-juelich.de/record/865060/files/s41535-019-0179-7.pdf$$yOpenAccess
000865060 8564_ $$uhttps://juser.fz-juelich.de/record/865060/files/s41535-019-0179-7.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865060 909CO $$ooai:juser.fz-juelich.de:865060$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000865060 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157840$$aForschungszentrum Jülich$$b3$$kFZJ
000865060 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b5$$kFZJ
000865060 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b6$$kFZJ
000865060 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000865060 9141_ $$y2019
000865060 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865060 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865060 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000865060 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000865060 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000865060 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865060 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000865060 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865060 920__ $$lyes
000865060 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000865060 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000865060 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000865060 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000865060 980__ $$ajournal
000865060 980__ $$aVDB
000865060 980__ $$aI:(DE-Juel1)IAS-1-20090406
000865060 980__ $$aI:(DE-Juel1)PGI-1-20110106
000865060 980__ $$aI:(DE-82)080009_20140620
000865060 980__ $$aI:(DE-82)080012_20140620
000865060 980__ $$aUNRESTRICTED
000865060 9801_ $$aFullTexts