001     865060
005     20210130002857.0
024 7 _ |a 10.1038/s41535-019-0179-7
|2 doi
024 7 _ |a 2128/22731
|2 Handle
024 7 _ |a altmetric:64865570
|2 altmetric
024 7 _ |a WOS:000493556200001
|2 WOS
037 _ _ |a FZJ-2019-04622
082 _ _ |a 530
100 1 _ |a Schneider, Lucas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Magnetism and in-gap states of 3d transition metal atoms on superconducting Re
260 _ _ |a [London]
|c 2019
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581690854_18304
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic atoms on heavy-element superconducting substrates are potential building blocks for realizing topological superconductivity in one- and two-dimensional atomic arrays. Their localized magnetic moments induce so-called Yu-Shiba-Rusinov (YSR) states inside the energy gap of the substrate. In the dilute limit, where the electronic states of the array atoms are only weakly coupled, proximity of the YSR states to the Fermi energy is essential for the formation of topological superconductivity in the band of YSR states. Here, we reveal via scanning tunnel spectroscopy and ab initio calculations of a series of 3d transition metal atoms (Mn, Fe, Co) adsorbed on the heavy-element superconductor Re that the increase of the Kondo coupling and sign change in magnetic anisotropy with d-state filling is accompanied by a shift of the YSR states through the energy gap of the substrate and a crossing of the Fermi level. The uncovered systematic trends enable the identification of the most promising candidates for the realization of topological superconductivity in arrays of similar systems
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a Dynasore - Dynamical magnetic excitations with spin-orbit interaction in realistic nanostructures (681405)
|0 G:(EU-Grant)681405
|c 681405
|f ERC-2015-CoG
|x 1
536 _ _ |a First-principles investigation of single magnetic nano-skyrmions (jara0189_20180501)
|0 G:(DE-Juel1)jara0189_20180501
|c jara0189_20180501
|f First-principles investigation of single magnetic nano-skyrmions
|x 2
536 _ _ |a First-principles investigation of single magnetic nano-skyrmions (jias17_20150501)
|0 G:(DE-Juel1)jias17_20150501
|c jias17_20150501
|f First-principles investigation of single magnetic nano-skyrmions
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Steinbrecher, Manuel
|0 0000-0003-3250-402X
|b 1
700 1 _ |a Rózsa, Levente
|0 0000-0001-9456-5755
|b 2
700 1 _ |a Bouaziz, Juba
|0 P:(DE-Juel1)157840
|b 3
|u fzj
700 1 _ |a Palotás, Krisztián
|0 0000-0002-1914-2901
|b 4
700 1 _ |a dos Santos Dias, Manuel
|0 P:(DE-Juel1)145395
|b 5
700 1 _ |a Lounis, Samir
|0 P:(DE-Juel1)130805
|b 6
700 1 _ |a Wiebe, Jens
|0 0000-0003-1668-6142
|b 7
|e Corresponding author
700 1 _ |a Wiesendanger, Roland
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1038/s41535-019-0179-7
|g Vol. 4, no. 1, p. 42
|0 PERI:(DE-600)2882263-8
|n 1
|p 42
|t npj quantum materials
|v 4
|y 2019
|x 2397-4648
856 4 _ |u https://juser.fz-juelich.de/record/865060/files/s41535-019-0179-7.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865060/files/s41535-019-0179-7.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:865060
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130805
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21