000865061 001__ 865061
000865061 005__ 20210130002858.0
000865061 0247_ $$2doi$$a10.1088/1361-648X/ab360b
000865061 0247_ $$2ISSN$$a0953-8984
000865061 0247_ $$2ISSN$$a1361-648X
000865061 0247_ $$2pmid$$apmid:31349244
000865061 0247_ $$2WOS$$aWOS:000482010000002
000865061 0247_ $$2altmetric$$aaltmetric:59747313
000865061 0247_ $$2Handle$$a2128/24172
000865061 037__ $$aFZJ-2019-04623
000865061 082__ $$a530
000865061 1001_ $$0P:(DE-HGF)0$$aSmiri, Adlen$$b0$$eCorresponding author
000865061 245__ $$aDependence of the magnetic interactions in MoS 2 monolayer on Mn-doping configurations
000865061 260__ $$aBristol$$bIOP Publ.80390$$c2019
000865061 3367_ $$2DRIVER$$aarticle
000865061 3367_ $$2DataCite$$aOutput Types/Journal article
000865061 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568267544_2419
000865061 3367_ $$2BibTeX$$aARTICLE
000865061 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865061 3367_ $$00$$2EndNote$$aJournal Article
000865061 520__ $$aUnderstanding the magnetic properties of the various Mn doping configurations that can be encountered in 2H-MoS2 monolayer could be beneficial for its use in spintronics. Using density functional theory plus Hubbard term (DFT  +  U) approach, we study how a single isolated, double- and triple-substitution configurations of Mn atoms within a MoS2 monolayer could contribute to its total magnetization. We find that the doping-configuration plays a critical role in stabilizing a ferromagnetic state in a Mn-doped MoS2 monolayer. Indeed, the Mn–Mn magnetic interaction is found to be ferromagnetic and strong for Mn in equidistant substitution positions where the separation average range of 6–11 . The strongest ferromagnetic interaction is found when substitutions are in second nearest neighbor Mo-sites of the armchair chain. Clustering is energetically favorable but it strongly reduces the ferromagnetic exchange energies. Furthermore, in term of electronic properties, we show that the Mn-doped MoS2 monolayer can change its electronic behavior from semiconductor to half-metallic depending on the doping configuration. Our results suggest that ordering the Mn dopants on MoS2 monolayer is needed to increase its potential ferromagnetism.
000865061 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000865061 536__ $$0G:(EU-Grant)681405$$aDynasore - Dynamical magnetic excitations with spin-orbit interaction in realistic nanostructures (681405)$$c681405$$fERC-2015-CoG$$x1
000865061 588__ $$aDataset connected to CrossRef
000865061 7001_ $$0P:(DE-HGF)0$$aGerber, Iann C$$b1
000865061 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b2
000865061 7001_ $$0P:(DE-HGF)0$$aJaziri, Sihem$$b3
000865061 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ab360b$$gVol. 31, no. 46, p. 465802 -$$n46$$p465802$$tJournal of physics / Condensed matter Condensed matter$$v31$$x1361-648X$$y2019
000865061 8564_ $$uhttps://juser.fz-juelich.de/record/865061/files/Smiri_2019_J._Phys.__Condens._Matter_31_465802.pdf$$yRestricted
000865061 8564_ $$uhttps://juser.fz-juelich.de/record/865061/files/Smiri_2019_J._Phys.__Condens._Matter_31_465802.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865061 8564_ $$uhttps://juser.fz-juelich.de/record/865061/files/1904.12905.pdf$$yOpenAccess
000865061 8564_ $$uhttps://juser.fz-juelich.de/record/865061/files/1904.12905.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865061 909CO $$ooai:juser.fz-juelich.de:865061$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000865061 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b2$$kFZJ
000865061 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000865061 9141_ $$y2019
000865061 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865061 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2017
000865061 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865061 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865061 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865061 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865061 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865061 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865061 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865061 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000865061 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865061 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000865061 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865061 920__ $$lyes
000865061 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000865061 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000865061 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000865061 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000865061 980__ $$ajournal
000865061 980__ $$aVDB
000865061 980__ $$aUNRESTRICTED
000865061 980__ $$aI:(DE-Juel1)IAS-1-20090406
000865061 980__ $$aI:(DE-Juel1)PGI-1-20110106
000865061 980__ $$aI:(DE-82)080009_20140620
000865061 980__ $$aI:(DE-82)080012_20140620
000865061 9801_ $$aFullTexts