001     865070
005     20220930130218.0
024 7 _ |a 10.3390/app9183783
|2 doi
024 7 _ |a 2128/22730
|2 Handle
024 7 _ |a WOS:000489115200143
|2 WOS
037 _ _ |a FZJ-2019-04632
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Aniello, Gianmarco
|0 P:(DE-Juel1)172886
|b 0
|e Corresponding author
245 _ _ |a The transition to renewable energy technologies—Impact on economic performance of North Rhine-Westphalia
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568205671_15513
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The economic impacts of the German Renewable Energy Act (EEG) are of considerable importance for the discussion of the energy transition in Germany (Energiewende). The Energiewende implies structural changes of the energy system by deploying Renewable Energy (and energy efficiency) Technologies (RET), but it also may induce structural changes for the overall economy, with uneven effects on a sub-national level. North-Rhine Westphalia (NRW) is an ideal case to study such regional disparities, since this federal state has scarce per-capita renewable energy sources, whereas it stands out for its energy intensive industry and fossil-fuel based power plants. In order to support renewable energy policies, mostly gross impact assessments of RET deployment have been carried out both on national and regional levels. By definition, such analyses result in positive assessments, since only expansionary effects resulting from additional demand for RET are accounted for. This paper, in contrast, presents a net impact assessment of the EEG on the NRW economy of both expansionary and contractionary effects. The latter consist of negative income effects, increased production costs and, the crowding-out of conventional energy due to the renewable energy financing mechanism (i.e., electricity surcharge), as well as its preferential status for feed-in. Our findings show how North-Rhine Westphalia, with regard to the operation of RET, suffers disproportionally from negative effects in relation to the value addition of its economy in comparison to the rest the country, whereas it benefits marginally from the production of such facilities.
536 _ _ |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)
|0 G:(DE-HGF)POF3-153
|c POF3-153
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Többen, Johannes
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kuckshinrichs, Wilhelm
|0 P:(DE-Juel1)130467
|b 2
770 _ _ |a State-of-the-Art and Applications of Renewable Energies in Europe
773 _ _ |a 10.3390/app9183783
|g Vol. 9, no. 18, p. 3783 -
|0 PERI:(DE-600)2704225-X
|n 18
|p 3783
|t Applied Sciences
|v 9
|y 2019
|x 2076-3417
856 4 _ |u https://juser.fz-juelich.de/record/865070/files/Invoice_MDPI_applsci-563323.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/865070/files/applsci-09-03783.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/865070/files/Invoice_MDPI_applsci-563323.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/865070/files/applsci-09-03783.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865070
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172886
910 1 _ |a Industrial Ecology Program (IndEcol), Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130467
913 1 _ |a DE-HGF
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|2 G:(DE-HGF)POF3-100
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SCI-BASEL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21