000865076 001__ 865076
000865076 005__ 20240708132808.0
000865076 0247_ $$2doi$$a10.1016/j.actamat.2019.08.053
000865076 0247_ $$2ISSN$$a1359-6454
000865076 0247_ $$2ISSN$$a1873-2453
000865076 0247_ $$2altmetric$$aaltmetric:65700164
000865076 0247_ $$2WOS$$aWOS:000495519100005
000865076 037__ $$aFZJ-2019-04638
000865076 082__ $$a670
000865076 1001_ $$0P:(DE-Juel1)174238$$aRan, Ke$$b0$$eCorresponding author$$ufzj
000865076 245__ $$aProcessing-induced secondary phase formation in Mo-substituted lanthanum tungstate membranes
000865076 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000865076 3367_ $$2DRIVER$$aarticle
000865076 3367_ $$2DataCite$$aOutput Types/Journal article
000865076 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596702190_31023
000865076 3367_ $$2BibTeX$$aARTICLE
000865076 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865076 3367_ $$00$$2EndNote$$aJournal Article
000865076 520__ $$aThe compositional homogeneity of a technically relevant hydrogen separation membrane, La5.4W0.8Mo0.2O12-δ (LWO-Mo20), was studied using comprehensive transmission electron microscopy (TEM) techniques. The membrane is predominantly composed of dense LWO-Mo20 grains with a defect fluorite structure. In addition to the primary phase, the observed secondary phase (SP) grains were identified as La2/3(Mg1/2W1/2)O3, with the W sites partially occupied by Mo, Fe and Al. Part of the SP grains were incorporated into single LWO-Mo20 grains through smart orientations, in which massive structural defects at the interface of the LWO-Mo20 and SP grains are efficiently avoided. Slight elemental disorder is limited within a few atomic layers. In contrast, the LWO-Mo20 grains share barely common features with neighboring SP grains, and are unstable under electron beam irradiation. The formation of the SP was tracked back to the traces of impurities in the precursors. Excluding such impurities is technically challenging and unacceptable in terms of cost. Hence, our results here show an opportunity to remedy these impurities through engineering the SP into individual primary grains, in which even a significant cost reduction could thus be realized.
000865076 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000865076 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000865076 588__ $$aDataset connected to CrossRef
000865076 7001_ $$0P:(DE-Juel1)144923$$aDeibert, Wendelin$$b1$$ufzj
000865076 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b2
000865076 7001_ $$0P:(DE-Juel1)176950$$aPark, Daesung$$b3$$ufzj
000865076 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya E.$$b4$$ufzj
000865076 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm A.$$b5$$ufzj
000865076 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6$$ufzj
000865076 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2019.08.053$$gVol. 180, p. 35 - 41$$p35 - 41$$tActa materialia$$v180$$x1359-6454$$y2019
000865076 909CO $$ooai:juser.fz-juelich.de:865076$$pVDB
000865076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174238$$aForschungszentrum Jülich$$b0$$kFZJ
000865076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b1$$kFZJ
000865076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b2$$kFZJ
000865076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176950$$aForschungszentrum Jülich$$b3$$kFZJ
000865076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b4$$kFZJ
000865076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b5$$kFZJ
000865076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b6$$kFZJ
000865076 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000865076 9141_ $$y2019
000865076 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2017
000865076 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865076 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865076 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865076 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865076 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865076 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865076 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865076 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865076 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865076 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865076 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2017
000865076 920__ $$lyes
000865076 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000865076 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000865076 980__ $$ajournal
000865076 980__ $$aVDB
000865076 980__ $$aI:(DE-Juel1)IEK-1-20101013
000865076 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000865076 980__ $$aUNRESTRICTED
000865076 981__ $$aI:(DE-Juel1)IMD-2-20101013