000865082 001__ 865082
000865082 005__ 20220930130218.0
000865082 0247_ $$2doi$$a10.15252/embj.2019101468
000865082 0247_ $$2ISSN$$a0261-4189
000865082 0247_ $$2ISSN$$a1460-2075
000865082 0247_ $$2Handle$$a2128/24965
000865082 0247_ $$2altmetric$$aaltmetric:66419065
000865082 0247_ $$2pmid$$apmid:31506973
000865082 0247_ $$2WOS$$aWOS:000486931900001
000865082 037__ $$aFZJ-2019-04644
000865082 082__ $$a570
000865082 1001_ $$0P:(DE-Juel1)157846$$aKortzak, Daniel$$b0
000865082 245__ $$aAllosteric gate modulation confers K + coupling in glutamate transporters
000865082 260__ $$aHoboken, NJ [u.a.]$$bWiley$$c2019
000865082 3367_ $$2DRIVER$$aarticle
000865082 3367_ $$2DataCite$$aOutput Types/Journal article
000865082 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615814476_31601
000865082 3367_ $$2BibTeX$$aARTICLE
000865082 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865082 3367_ $$00$$2EndNote$$aJournal Article
000865082 520__ $$aExcitatory amino acid transporters (EAAT s) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na+ and 1 H+, in exchange with 1 K+. The underlying principles of this complex transport stoichiometry remain poorly understood. We use molecular dynamics simulations and electrophysiological experiments to elucidate how mammalian EAAT s harness K+ gradients, unlike their K+‐independent prokaryotic homologues. Glutamate transport is achieved via elevator‐like translocation of the transport domain. In EAAT s, glutamate‐free re‐translocation is prevented by an external gate remaining open until K+ binding closes and locks the gate. Prokaryotic GltPh contains the same K+‐binding site, but the gate can close without K+. Our study provides a comprehensive description of K+‐dependent glutamate transport and reveals a hitherto unknown allosteric coupling mechanism that permits adaptions of the transport stoichiometry without affecting ion or substrate binding.
000865082 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000865082 536__ $$0G:(DE-Juel1)jics41_20161101$$aMechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family (jics41_20161101)$$cjics41_20161101$$fMechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family$$x1
000865082 536__ $$0G:(DE-Juel1)jara0177_20171101$$aMolecular dynamics of the SLC26 family of ion channels and transporters (jara0177_20171101)$$cjara0177_20171101$$fMolecular dynamics of the SLC26 family of ion channels and transporters$$x2
000865082 536__ $$0G:(DE-Juel1)jics42_20181101$$aMultiscale simulations of voltage-gated sodium channel complexes and clusters (jics42_20181101)$$cjics42_20181101$$fMultiscale simulations of voltage-gated sodium channel complexes and clusters$$x3
000865082 536__ $$0G:(DE-Juel1)jics40_20190501$$aMOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS (jics40_20190501)$$cjics40_20190501$$fMOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS$$x4
000865082 536__ $$0G:(DE-Juel1)jara0180_20200501$$aMolecular dynamics simulations of P2X receptors (jara0180_20200501)$$cjara0180_20200501$$fMolecular dynamics simulations of P2X receptors$$x5
000865082 588__ $$aDataset connected to CrossRef
000865082 7001_ $$0P:(DE-Juel1)165847$$aAlleva, Claudia$$b1$$ufzj
000865082 7001_ $$0P:(DE-Juel1)131944$$aWeyand, Ingo$$b2$$ufzj
000865082 7001_ $$0P:(DE-Juel1)168126$$aEwers, David$$b3
000865082 7001_ $$0P:(DE-Juel1)145125$$aZimmermann, Meike I$$b4$$ufzj
000865082 7001_ $$0P:(DE-Juel1)131923$$aFranzen, Arne$$b5$$ufzj
000865082 7001_ $$0P:(DE-Juel1)156429$$aMachtens, Jan‐Philipp$$b6
000865082 7001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b7$$eCorresponding author
000865082 773__ $$0PERI:(DE-600)1467419-1$$a10.15252/embj.2019101468$$n19$$pe101468$$tThe EMBO journal$$v38$$x1460-2075$$y2019
000865082 8564_ $$uhttps://juser.fz-juelich.de/record/865082/files/Rechnung-Cover.pdf
000865082 8564_ $$uhttps://juser.fz-juelich.de/record/865082/files/Rechnung-Cover.pdf?subformat=pdfa$$xpdfa
000865082 8564_ $$uhttps://juser.fz-juelich.de/record/865082/files/embj.2019101468.pdf$$yOpenAccess
000865082 8564_ $$uhttps://juser.fz-juelich.de/record/865082/files/embj.2019101468.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865082 8767_ $$92019-08-28$$d2019-09-11$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pEMBOJ-2019-101468
000865082 8767_ $$92019-10-08$$d2020-02-05$$eCover$$jZahlung erfolgt$$p2019101468$$zNachtrag der Rechnung aus 2019
000865082 909CO $$ooai:juser.fz-juelich.de:865082$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000865082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157846$$aForschungszentrum Jülich$$b0$$kFZJ
000865082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165847$$aForschungszentrum Jülich$$b1$$kFZJ
000865082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131944$$aForschungszentrum Jülich$$b2$$kFZJ
000865082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145125$$aForschungszentrum Jülich$$b4$$kFZJ
000865082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131923$$aForschungszentrum Jülich$$b5$$kFZJ
000865082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156429$$aForschungszentrum Jülich$$b6$$kFZJ
000865082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich$$b7$$kFZJ
000865082 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000865082 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000865082 9141_ $$y2020
000865082 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865082 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000865082 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865082 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865082 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEMBO J : 2017
000865082 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEMBO J : 2017
000865082 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865082 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865082 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865082 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865082 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865082 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865082 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000865082 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865082 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000865082 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865082 920__ $$lyes
000865082 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0
000865082 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000865082 980__ $$ajournal
000865082 980__ $$aVDB
000865082 980__ $$aI:(DE-Juel1)ICS-4-20110106
000865082 980__ $$aI:(DE-82)080012_20140620
000865082 980__ $$aAPC
000865082 980__ $$aUNRESTRICTED
000865082 9801_ $$aAPC
000865082 9801_ $$aFullTexts
000865082 981__ $$aI:(DE-Juel1)IBI-1-20200312