001     865082
005     20220930130218.0
024 7 _ |a 10.15252/embj.2019101468
|2 doi
024 7 _ |a 0261-4189
|2 ISSN
024 7 _ |a 1460-2075
|2 ISSN
024 7 _ |a 2128/24965
|2 Handle
024 7 _ |a altmetric:66419065
|2 altmetric
024 7 _ |a pmid:31506973
|2 pmid
024 7 _ |a WOS:000486931900001
|2 WOS
037 _ _ |a FZJ-2019-04644
082 _ _ |a 570
100 1 _ |a Kortzak, Daniel
|0 P:(DE-Juel1)157846
|b 0
245 _ _ |a Allosteric gate modulation confers K + coupling in glutamate transporters
260 _ _ |a Hoboken, NJ [u.a.]
|c 2019
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615814476_31601
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Excitatory amino acid transporters (EAAT s) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na+ and 1 H+, in exchange with 1 K+. The underlying principles of this complex transport stoichiometry remain poorly understood. We use molecular dynamics simulations and electrophysiological experiments to elucidate how mammalian EAAT s harness K+ gradients, unlike their K+‐independent prokaryotic homologues. Glutamate transport is achieved via elevator‐like translocation of the transport domain. In EAAT s, glutamate‐free re‐translocation is prevented by an external gate remaining open until K+ binding closes and locks the gate. Prokaryotic GltPh contains the same K+‐binding site, but the gate can close without K+. Our study provides a comprehensive description of K+‐dependent glutamate transport and reveals a hitherto unknown allosteric coupling mechanism that permits adaptions of the transport stoichiometry without affecting ion or substrate binding.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a Mechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family (jics41_20161101)
|0 G:(DE-Juel1)jics41_20161101
|c jics41_20161101
|f Mechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family
|x 1
536 _ _ |a Molecular dynamics of the SLC26 family of ion channels and transporters (jara0177_20171101)
|0 G:(DE-Juel1)jara0177_20171101
|c jara0177_20171101
|f Molecular dynamics of the SLC26 family of ion channels and transporters
|x 2
536 _ _ |a Multiscale simulations of voltage-gated sodium channel complexes and clusters (jics42_20181101)
|0 G:(DE-Juel1)jics42_20181101
|c jics42_20181101
|f Multiscale simulations of voltage-gated sodium channel complexes and clusters
|x 3
536 _ _ |a MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS (jics40_20190501)
|0 G:(DE-Juel1)jics40_20190501
|c jics40_20190501
|f MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS
|x 4
536 _ _ |a Molecular dynamics simulations of P2X receptors (jara0180_20200501)
|0 G:(DE-Juel1)jara0180_20200501
|c jara0180_20200501
|f Molecular dynamics simulations of P2X receptors
|x 5
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Alleva, Claudia
|0 P:(DE-Juel1)165847
|b 1
|u fzj
700 1 _ |a Weyand, Ingo
|0 P:(DE-Juel1)131944
|b 2
|u fzj
700 1 _ |a Ewers, David
|0 P:(DE-Juel1)168126
|b 3
700 1 _ |a Zimmermann, Meike I
|0 P:(DE-Juel1)145125
|b 4
|u fzj
700 1 _ |a Franzen, Arne
|0 P:(DE-Juel1)131923
|b 5
|u fzj
700 1 _ |a Machtens, Jan‐Philipp
|0 P:(DE-Juel1)156429
|b 6
700 1 _ |a Fahlke, Christoph
|0 P:(DE-Juel1)136837
|b 7
|e Corresponding author
773 _ _ |a 10.15252/embj.2019101468
|0 PERI:(DE-600)1467419-1
|n 19
|p e101468
|t The EMBO journal
|v 38
|y 2019
|x 1460-2075
856 4 _ |u https://juser.fz-juelich.de/record/865082/files/Rechnung-Cover.pdf
856 4 _ |u https://juser.fz-juelich.de/record/865082/files/Rechnung-Cover.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/865082/files/embj.2019101468.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865082/files/embj.2019101468.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:865082
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157846
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165847
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145125
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131923
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156429
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)136837
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Functional Macromolecules and Complexes
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EMBO J : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EMBO J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21