Home > Publications database > Allosteric gate modulation confers K + coupling in glutamate transporters > print |
001 | 865082 | ||
005 | 20220930130218.0 | ||
024 | 7 | _ | |a 10.15252/embj.2019101468 |2 doi |
024 | 7 | _ | |a 0261-4189 |2 ISSN |
024 | 7 | _ | |a 1460-2075 |2 ISSN |
024 | 7 | _ | |a 2128/24965 |2 Handle |
024 | 7 | _ | |a altmetric:66419065 |2 altmetric |
024 | 7 | _ | |a pmid:31506973 |2 pmid |
024 | 7 | _ | |a WOS:000486931900001 |2 WOS |
037 | _ | _ | |a FZJ-2019-04644 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Kortzak, Daniel |0 P:(DE-Juel1)157846 |b 0 |
245 | _ | _ | |a Allosteric gate modulation confers K + coupling in glutamate transporters |
260 | _ | _ | |a Hoboken, NJ [u.a.] |c 2019 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1615814476_31601 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Excitatory amino acid transporters (EAAT s) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na+ and 1 H+, in exchange with 1 K+. The underlying principles of this complex transport stoichiometry remain poorly understood. We use molecular dynamics simulations and electrophysiological experiments to elucidate how mammalian EAAT s harness K+ gradients, unlike their K+‐independent prokaryotic homologues. Glutamate transport is achieved via elevator‐like translocation of the transport domain. In EAAT s, glutamate‐free re‐translocation is prevented by an external gate remaining open until K+ binding closes and locks the gate. Prokaryotic GltPh contains the same K+‐binding site, but the gate can close without K+. Our study provides a comprehensive description of K+‐dependent glutamate transport and reveals a hitherto unknown allosteric coupling mechanism that permits adaptions of the transport stoichiometry without affecting ion or substrate binding. |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 0 |
536 | _ | _ | |a Mechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family (jics41_20161101) |0 G:(DE-Juel1)jics41_20161101 |c jics41_20161101 |f Mechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family |x 1 |
536 | _ | _ | |a Molecular dynamics of the SLC26 family of ion channels and transporters (jara0177_20171101) |0 G:(DE-Juel1)jara0177_20171101 |c jara0177_20171101 |f Molecular dynamics of the SLC26 family of ion channels and transporters |x 2 |
536 | _ | _ | |a Multiscale simulations of voltage-gated sodium channel complexes and clusters (jics42_20181101) |0 G:(DE-Juel1)jics42_20181101 |c jics42_20181101 |f Multiscale simulations of voltage-gated sodium channel complexes and clusters |x 3 |
536 | _ | _ | |a MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS (jics40_20190501) |0 G:(DE-Juel1)jics40_20190501 |c jics40_20190501 |f MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS |x 4 |
536 | _ | _ | |a Molecular dynamics simulations of P2X receptors (jara0180_20200501) |0 G:(DE-Juel1)jara0180_20200501 |c jara0180_20200501 |f Molecular dynamics simulations of P2X receptors |x 5 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Alleva, Claudia |0 P:(DE-Juel1)165847 |b 1 |u fzj |
700 | 1 | _ | |a Weyand, Ingo |0 P:(DE-Juel1)131944 |b 2 |u fzj |
700 | 1 | _ | |a Ewers, David |0 P:(DE-Juel1)168126 |b 3 |
700 | 1 | _ | |a Zimmermann, Meike I |0 P:(DE-Juel1)145125 |b 4 |u fzj |
700 | 1 | _ | |a Franzen, Arne |0 P:(DE-Juel1)131923 |b 5 |u fzj |
700 | 1 | _ | |a Machtens, Jan‐Philipp |0 P:(DE-Juel1)156429 |b 6 |
700 | 1 | _ | |a Fahlke, Christoph |0 P:(DE-Juel1)136837 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.15252/embj.2019101468 |0 PERI:(DE-600)1467419-1 |n 19 |p e101468 |t The EMBO journal |v 38 |y 2019 |x 1460-2075 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/865082/files/Rechnung-Cover.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/865082/files/Rechnung-Cover.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/865082/files/embj.2019101468.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/865082/files/embj.2019101468.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:865082 |p openaire |p open_access |p OpenAPC |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)157846 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165847 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131944 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145125 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131923 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)156429 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)136837 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Functional Macromolecules and Complexes |x 0 |
913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EMBO J : 2017 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b EMBO J : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-4-20110106 |k ICS-4 |l Zelluläre Biophysik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-4-20110106 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)IBI-1-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|