000865113 001__ 865113
000865113 005__ 20240619092007.0
000865113 0247_ $$2doi$$a10.1002/smll.201803798
000865113 0247_ $$2ISSN$$a1613-6810
000865113 0247_ $$2ISSN$$a1613-6829
000865113 0247_ $$2altmetric$$aaltmetric:53217460
000865113 0247_ $$2pmid$$apmid:30589206
000865113 0247_ $$2WOS$$aWOS:000458673800004
000865113 037__ $$aFZJ-2019-04665
000865113 082__ $$a540
000865113 1001_ $$0P:(DE-HGF)0$$aRafipoor, Mona$$b0$$eCorresponding author
000865113 245__ $$aResonant Energy Transfer can Trigger Multiexciton Recombination in Dense Quantum Dot Ensembles
000865113 260__ $$aWeinheim$$bWiley-VCH$$c2019
000865113 3367_ $$2DRIVER$$aarticle
000865113 3367_ $$2DataCite$$aOutput Types/Journal article
000865113 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568357145_15702
000865113 3367_ $$2BibTeX$$aARTICLE
000865113 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865113 3367_ $$00$$2EndNote$$aJournal Article
000865113 520__ $$aCore/shell quantum dots/quantum rods are nanocrystals with typical application scenarios as ensembles. Resonance energy transfer is a possible process between adjacent nanocrystals. Highly excited nanocrystals can also relax energy by multiexciton recombination, competing against the energy transfer. The two processes have different dependencies and can be convolved, resulting in collective properties different from the superposition of the individual nanocrystals. A platform to study the interplay of energy transfer and multiexciton recombination is presented. CdSe/CdS quantum dot/quantum rods encapsulated in amphiphilic micelles with an interparticle distance control by spacer ligands are used for time‐resolved photoluminescence and transient absorption experiments. At exciton populations around one, the ensemble starts to be in a state where energy transfer can trigger multiexciton Auger recombination, altering the collective dynamics.
000865113 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000865113 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000865113 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000865113 588__ $$aDataset connected to CrossRef
000865113 7001_ $$0P:(DE-HGF)0$$aKoll, Rieke$$b1
000865113 7001_ $$0P:(DE-HGF)0$$aMerkl, Jan‐Philip$$b2
000865113 7001_ $$0P:(DE-Juel1)169361$$aFruhner, Lisa Sarah$$b3
000865113 7001_ $$0P:(DE-HGF)0$$aWeller, Horst$$b4
000865113 7001_ $$0P:(DE-HGF)0$$aLange, Holger$$b5
000865113 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.201803798$$gVol. 15, no. 5, p. 1803798 -$$n5$$p1803798 -$$tSmall$$v15$$x1613-6829$$y2019
000865113 8564_ $$uhttps://juser.fz-juelich.de/record/865113/files/Rafipoor_et_al-2019-Small.pdf$$yRestricted
000865113 8564_ $$uhttps://juser.fz-juelich.de/record/865113/files/Rafipoor_et_al-2019-Small.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865113 909CO $$ooai:juser.fz-juelich.de:865113$$pVDB
000865113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169361$$aForschungszentrum Jülich$$b3$$kFZJ
000865113 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000865113 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000865113 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000865113 9141_ $$y2019
000865113 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865113 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865113 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865113 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2017
000865113 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865113 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865113 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865113 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865113 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865113 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSMALL : 2017
000865113 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000865113 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung$$x1
000865113 980__ $$ajournal
000865113 980__ $$aVDB
000865113 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000865113 980__ $$aI:(DE-Juel1)ICS-1-20110106
000865113 980__ $$aUNRESTRICTED
000865113 981__ $$aI:(DE-Juel1)IBI-8-20200312
000865113 981__ $$aI:(DE-Juel1)JCNS-1-20110106