% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@INPROCEEDINGS{Manos:865117,
author = {Manos, Thanos and Diaz, Sandra and Hoffstaedter, Felix and
Schreiber, Jan and Peyser, Alexander and Eickhoff, Simon and
Popovych, Oleksandr},
title = {{I}mpact of brain parcellation on parameter optimization of
the whole-brain dynamical models},
reportid = {FZJ-2019-04669},
year = {2019},
abstract = {Recent progress in neuroimaging techniques has advanced our
understanding of structural and functional properties of the
brain. Resting-state functional connectivity (FC) analysis
has brought new insights to the inter-individual variability
[1]. Using diffusion-weighted magnetic resonance imaging,
one can retrieve the basic features of the anatomical
architecture of brain networks, i.e. structural connectivity
(SC) [2]. Empirical SC (eSC) and FC (eFC) can be used to
build and validate large-scale mathematical models of the
brain dynamics being in the focus of research nowadays [3,
4]. In this work, we set out to investigate the impact of
different brain atlases on the dynamics of the whole-brain
computational models and their optimal parameters fitted to
the neuroimaging data, resulting in the optimal agreement
between empirical and simulated data. We considered a sample
of 23 healthy subjects from the Human Connectome Project
database [5] and 2 different brain atlases, the
Harvard-Oxford structural atlas and the Schaefer functional
atlas [6]. The large-scale network model of brain activity
is based on an informed by eSC Kuramoto model [8] and is
simulated using The Virtual Brain (TVB) platform [7], with
an optimized code from TVB-HPC adequate for high-performance
clusters computing. We found that the two considered atlases
are in good agreement with respect to the optimal parameters
(e.g. global coupling strength K) and the corresponding
values of the correlation coefficient of the best
correspondence between sFC and eSC. Moreover, the considered
model can demonstrate relatively strong correlations between
eSC and sFC matrices whereas the correspondence between eFC
and sFC matrices is, however, weaker for both atlases
[9].References[1] Park H. J. and Friston K. J. (2013).
Structural and functional brain networks: from connections
to cognition. Science 342: 1238411.[2] Maier-Hein K. H.,
Neher P. F., Houde J.-C., Côté M.-A., Garyfallidis E.,
Zhong J., et al. (2017). The challenge of mapping the human
connectome based on diffusion tractography. Nat. Commun. 8:
1349.[3] Popovych O. V., Manos T., Hoffstaedter F. and
Eickhoff S. B. (2019). What can computational models
contribute to neuroimaging data analytics? Frontiers in
Systems Neuroscience (in press).[4] Deco G. and Kringelbach
M. (2016). Metastability and Coherence: Extending the
Communication through Coherence Hypothesis Using a
Whole-Brain Computational Perspective. Trends in
Neurosciences. 39(6):432[5] McNab J. A., Edlow B. L., Witzel
T., Huang S. Y., Bhat H., Heberlein K., Feiweier T., Liu K.,
Keil B., Cohen-Adad J., Tisdall M. D., Folkerth R. D.,
Kinney H. C., Wald L. L. (2013). The Human Connectome
Project and beyond: initial applications of 300 mT/m
gradients. NeuroImage 80:234.[6] Schaefer A., Kong R.,
Gordon E. M., Laumann T. O., Zuo X. N., Holmes A. J.,
Eickhoff S. B., and Yeo B. T. T. (2017). Local-global
parcellation of the human cerebral cortex from intrinsic
functional connectivity MRI, Cereb. Cortex, 28(9): 3095.[7]
Sanz Leon P., Knock S. A., Woodman M. M., Domide L.,
Mersmann J., McIntosh A. R. and Jirsa V. (2013). The Virtual
Brain: a simulator of primate brain network dynamics. Front.
Neuroinform. 7:10 (TVB-HPC:
https://gitlab.thevirtualbrain.org/tvb/hpc).[8] Kuramoto Y.
(1984). Chemical oscillations, waves, and turbulence,
Springer, Berlin.[9] Manos T., Diaz-Pier S., Hoffstaedter
F., Schreiber J., Eickhoff S. B. and Popovych O. V. (in
preparation).},
month = {Jul},
date = {2019-07-13},
organization = {CNS*2019, Barcelona (Spain), 13 Jul
2019 - 17 Jul 2019},
subtyp = {Other},
cin = {JSC / INM-7 / INM-1},
cid = {I:(DE-Juel1)JSC-20090406 / I:(DE-Juel1)INM-7-20090406 /
I:(DE-Juel1)INM-1-20090406},
pnm = {511 - Computational Science and Mathematical Methods
(POF3-511) / 574 - Theory, modelling and simulation
(POF3-574) / VirtualBrainCloud - Personalized
Recommendations for Neurodegenerative Disease (826421) / HBP
SGA2 - Human Brain Project Specific Grant Agreement 2
(785907) / SLNS - SimLab Neuroscience (Helmholtz-SLNS)},
pid = {G:(DE-HGF)POF3-511 / G:(DE-HGF)POF3-574 /
G:(EU-Grant)826421 / G:(EU-Grant)785907 /
G:(DE-Juel1)Helmholtz-SLNS},
typ = {PUB:(DE-HGF)24},
url = {https://juser.fz-juelich.de/record/865117},
}