000865131 001__ 865131
000865131 005__ 20230426083211.0
000865131 0247_ $$2doi$$a10.1103/PhysRevB.99.195136
000865131 0247_ $$2ISSN$$a0163-1829
000865131 0247_ $$2ISSN$$a0556-2805
000865131 0247_ $$2ISSN$$a1050-2947
000865131 0247_ $$2ISSN$$a1094-1622
000865131 0247_ $$2ISSN$$a1095-3795
000865131 0247_ $$2ISSN$$a1098-0121
000865131 0247_ $$2ISSN$$a1538-4489
000865131 0247_ $$2ISSN$$a1550-235X
000865131 0247_ $$2ISSN$$a2469-9950
000865131 0247_ $$2ISSN$$a2469-9969
000865131 0247_ $$2Handle$$a2128/22819
000865131 0247_ $$2WOS$$aWOS:000469060200001
000865131 037__ $$aFZJ-2019-04683
000865131 082__ $$a530
000865131 1001_ $$0P:(DE-HGF)0$$aSjöstrand, T. J.$$b0$$eCorresponding author
000865131 245__ $$aPosition representation of effective electron-electron interactions in solids
000865131 260__ $$aWoodbury, NY$$bInst.$$c2019
000865131 3367_ $$2DRIVER$$aarticle
000865131 3367_ $$2DataCite$$aOutput Types/Journal article
000865131 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582039410_32444
000865131 3367_ $$2BibTeX$$aARTICLE
000865131 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865131 3367_ $$00$$2EndNote$$aJournal Article
000865131 520__ $$aAn essential ingredient in many model Hamiltonians, such as the Hubbard model, is the effective electron-electron interaction U, which enters as matrix elements in some localized basis. These matrix elements provide the necessary information in the model, but the localized basis is incomplete for describing U. We present a systematic scheme for computing the manifestly basis-independent dynamical interaction in position representation, U(r,r′;ω), and its Fourier transform to time domain, U(r,r′;τ). These functions can serve as an unbiased tool for the construction of model Hamiltonians. For illustration we apply the scheme within the constrained random-phase approximation to the cuprate parent compounds La2CuO4 and HgBa2CuO4 within the commonly used one- and three-band models, and to nonsuperconducting SrVO3 within the t2g model. Our method is used to investigate the shape and strength of screening channels in the compounds. We show that the O2px,y−Cu3dx2−y2 screening gives rise to regions with strong attractive static interaction in the minimal (one-band) model in both cuprates. On the other hand, in the minimal (t2g) model of SrVO3 only regions with a minute attractive interaction are found. The temporal interaction exhibits generic damped oscillations in all compounds, and its time integral is shown to be the potential caused by inserting a frozen point charge at τ=0. When studying the latter within the three-band model for the cuprates, short time intervals are found to produce a negative potential.
000865131 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000865131 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000865131 542__ $$2Crossref$$i2019-05-21$$uhttps://link.aps.org/licenses/aps-default-license
000865131 588__ $$aDataset connected to CrossRef
000865131 7001_ $$0P:(DE-HGF)0$$aNilsson, F.$$b1
000865131 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b2
000865131 7001_ $$0P:(DE-HGF)0$$aAryasetiawan, F.$$b3
000865131 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.99.195136$$bAmerican Physical Society (APS)$$d2019-05-21$$n19$$p195136$$tPhysical Review B$$v99$$x2469-9950$$y2019
000865131 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.99.195136$$gVol. 99, no. 19, p. 195136$$n19$$p195136$$tPhysical review / B$$v99$$x2469-9950$$y2019
000865131 8564_ $$uhttps://juser.fz-juelich.de/record/865131/files/PhysRevB.99.195136.pdf$$yOpenAccess
000865131 8564_ $$uhttps://juser.fz-juelich.de/record/865131/files/PhysRevB.99.195136.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865131 909CO $$ooai:juser.fz-juelich.de:865131$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b2$$kFZJ
000865131 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000865131 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000865131 9141_ $$y2019
000865131 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865131 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865131 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000865131 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000865131 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865131 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865131 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865131 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865131 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865131 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865131 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865131 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865131 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865131 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000865131 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000865131 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000865131 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000865131 980__ $$ajournal
000865131 980__ $$aVDB
000865131 980__ $$aI:(DE-Juel1)IAS-1-20090406
000865131 980__ $$aI:(DE-Juel1)PGI-1-20110106
000865131 980__ $$aI:(DE-82)080009_20140620
000865131 980__ $$aI:(DE-82)080012_20140620
000865131 980__ $$aUNRESTRICTED
000865131 9801_ $$aFullTexts
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.139.A796
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(67)90591-1
000865131 999C5 $$1G. M. Eliashberg$$2Crossref$$oG. M. Eliashberg 1960$$y1960
000865131 999C5 $$1G. M. Eliashberg$$2Crossref$$oG. M. Eliashberg 1960$$y1960
000865131 999C5 $$1G. M. Eliashberg$$2Crossref$$oG. M. Eliashberg 1960$$y1960
000865131 999C5 $$1G. M. Eliashberg$$2Crossref$$oG. M. Eliashberg 1961$$y1961
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.104513
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJ.87.041012
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.024545
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.057006
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.195104
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.176402
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.121101
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01303701
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.108.1175
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.41.282
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.35.8814
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.235.4793.1196
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(94)00086-I
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.72.969
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.58.1028
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.58.2794
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.125142
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4534(00)00378-6
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.15.524
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.28.5100
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/7/1/140
000865131 999C5 $$1J. Lindhard$$2Crossref$$oJ. Lindhard 1954$$y1954
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/12/11/307
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.155134
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.12847
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.16214
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/61/3/002
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.125102
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0038-1098(02)00028-5
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/andp.19213690304
000865131 999C5 $$1V. I. Anisimov$$2Crossref$$oV. I. Anisimov Advances in Condensed Matter Science 2000$$tAdvances in Condensed Matter Science$$y2000
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2008.10.009
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.125106
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep33397
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.38.6650
000865131 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/362226a0
000865131 999C5 $$1V. A. Fotiev$$2Crossref$$oV. A. Fotiev 1987$$y1987