001     865131
005     20230426083211.0
024 7 _ |a 10.1103/PhysRevB.99.195136
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/22819
|2 Handle
024 7 _ |a WOS:000469060200001
|2 WOS
037 _ _ |a FZJ-2019-04683
082 _ _ |a 530
100 1 _ |a Sjöstrand, T. J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Position representation of effective electron-electron interactions in solids
260 _ _ |a Woodbury, NY
|c 2019
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582039410_32444
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An essential ingredient in many model Hamiltonians, such as the Hubbard model, is the effective electron-electron interaction U, which enters as matrix elements in some localized basis. These matrix elements provide the necessary information in the model, but the localized basis is incomplete for describing U. We present a systematic scheme for computing the manifestly basis-independent dynamical interaction in position representation, U(r,r′;ω), and its Fourier transform to time domain, U(r,r′;τ). These functions can serve as an unbiased tool for the construction of model Hamiltonians. For illustration we apply the scheme within the constrained random-phase approximation to the cuprate parent compounds La2CuO4 and HgBa2CuO4 within the commonly used one- and three-band models, and to nonsuperconducting SrVO3 within the t2g model. Our method is used to investigate the shape and strength of screening channels in the compounds. We show that the O2px,y−Cu3dx2−y2 screening gives rise to regions with strong attractive static interaction in the minimal (one-band) model in both cuprates. On the other hand, in the minimal (t2g) model of SrVO3 only regions with a minute attractive interaction are found. The temporal interaction exhibits generic damped oscillations in all compounds, and its time integral is shown to be the potential caused by inserting a frozen point charge at τ=0. When studying the latter within the three-band model for the cuprates, short time intervals are found to produce a negative potential.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
542 _ _ |i 2019-05-21
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nilsson, F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Friedrich, Christoph
|0 P:(DE-Juel1)130644
|b 2
700 1 _ |a Aryasetiawan, F.
|0 P:(DE-HGF)0
|b 3
773 1 8 |a 10.1103/physrevb.99.195136
|b American Physical Society (APS)
|d 2019-05-21
|n 19
|p 195136
|3 journal-article
|2 Crossref
|t Physical Review B
|v 99
|y 2019
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.99.195136
|g Vol. 99, no. 19, p. 195136
|0 PERI:(DE-600)2844160-6
|n 19
|p 195136
|t Physical review / B
|v 99
|y 2019
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/865131/files/PhysRevB.99.195136.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865131/files/PhysRevB.99.195136.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:865131
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130644
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1103/PhysRev.139.A796
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0038-1098(67)90591-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 G. M. Eliashberg
|y 1960
|2 Crossref
|o G. M. Eliashberg 1960
999 C 5 |1 G. M. Eliashberg
|y 1960
|2 Crossref
|o G. M. Eliashberg 1960
999 C 5 |1 G. M. Eliashberg
|y 1960
|2 Crossref
|o G. M. Eliashberg 1960
999 C 5 |1 G. M. Eliashberg
|y 1961
|2 Crossref
|o G. M. Eliashberg 1961
999 C 5 |a 10.1103/PhysRevB.70.104513
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.7566/JPSJ.87.041012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.024545
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.057006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.195104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.102.176402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.121101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01303701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.108.1175
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.41.282
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.35.8814
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.235.4793.1196
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-1573(94)00086-I
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.72.969
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.58.1028
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.58.2794
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.125142
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0921-4534(00)00378-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.15.524
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.28.5100
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/7/1/140
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. Lindhard
|y 1954
|2 Crossref
|o J. Lindhard 1954
999 C 5 |a 10.1088/0953-8984/12/11/307
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.155134
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.56.12847
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.49.16214
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/61/3/002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.125102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0038-1098(02)00028-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/andp.19213690304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 V. I. Anisimov
|y 2000
|2 Crossref
|t Advances in Condensed Matter Science
|o V. I. Anisimov Advances in Condensed Matter Science 2000
999 C 5 |a 10.1016/j.cpc.2008.10.009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.125106
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep33397
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.38.6650
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/362226a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 V. A. Fotiev
|y 1987
|2 Crossref
|o V. A. Fotiev 1987


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21