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Position representation of effective electron-electron interactions in solids
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An essential ingredient in many model Hamiltonians, such as the Hubbard model, is the effective electron-
electron interaction U , which enters as matrix elements in some localized basis. These matrix elements
provide the necessary information in the model, but the localized basis is incomplete for describing U . We
present a systematic scheme for computing the manifestly basis-independent dynamical interaction in position
representation, U (r, r′; ω), and its Fourier transform to time domain, U (r, r′; τ ). These functions can serve as
an unbiased tool for the construction of model Hamiltonians. For illustration we apply the scheme within the
constrained random-phase approximation to the cuprate parent compounds La2CuO4 and HgBa2CuO4 within
the commonly used one- and three-band models, and to nonsuperconducting SrVO3 within the t2g model. Our
method is used to investigate the shape and strength of screening channels in the compounds. We show that
the O 2px,y − Cu 3dx2−y2 screening gives rise to regions with strong attractive static interaction in the minimal
(one-band) model in both cuprates. On the other hand, in the minimal (t2g) model of SrVO3 only regions with
a minute attractive interaction are found. The temporal interaction exhibits generic damped oscillations in all
compounds, and its time integral is shown to be the potential caused by inserting a frozen point charge at τ = 0.
When studying the latter within the three-band model for the cuprates, short time intervals are found to produce
a negative potential.
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I. INTRODUCTION

One of the most important quantities in many-electron
physics is the screened Coulomb interaction between two
electrons W , which is a central quantity entering the Hedin
equations [1]. Its asymptotic value (ω → ∞) equals the bare
Coulomb interaction v, whereas its static value (ω → 0) is
very much reduced compared to v due to the dynamic screen-
ing of the system, embodied by the retarded response. For
finite ω, it becomes a complex quantity whose imaginary part
can be directly related to the experimentally measured energy-
loss spectra [2]. Many quantities and equations are intimately
tied to W since the electron self-energy � is a functional of it.
One example is Eliashberg theory of superconductivity [3,4],
which for years has been investigated in terms of effective
interactions [5], and which recently was made parameter
free by making use of W [6], just as in superconducting
density functional theory [7,8]. A quantity closely related to
W is the effective low-energy interaction or partially screened
interaction U , which excludes screening from a low-energy
subspace corresponding to a model Hamiltonian and may be
regarded as a dynamical and nonlocal generalization of the
Hubbard on-site repulsion [9–11].

In the position representation, W and U are functions of
two position variables and time (or frequency): W (r, r′; τ ),
U (r, r′; τ ′), but little is known about the actual shape of these
functions. The focus is typically on their matrix elements
in some set of orbitals, either because these are needed
when calculating other quantities or because they are central
objects in Hubbard-like models. However, matrix elements
are basis-dependent and, since being projected quantities,

do not contain complete information about the screened in-
teraction. We therefore present a systematic scheme which
allows for the computation of the position representations of
the frequency-dependent W and U , manifestly independent
of any basis. This provides an unbiased tool to pin down
how a suitable model can be constructed in a given peri-
odic solid. A subsequent Fourier transform reveals the full
spatiotemporal interactions W (r, r′; τ ), U (r, r′; τ ). A space-
time point of view may furnish useful complementary in-
sights into the physics problem at hand, like that of high-
TC superconductivity. To illustrate the use of the developed
scheme, we compute the screened interactions in the well-
known high-temperature superconductor parent compounds
La2CuO4 (LCO) and HgBa2CuO4 (HBCO), and for compar-
ison in nonsuperconducting SrVO3, a prototype of correlated
metals.

Shortly after the ground-breaking discovery of high-
temperature superconductivity in the doped cuprates [12] it
was realized that standard Bardeen-Cooper Schrieffer (BCS)
theory [13], based on electron-phonon interaction, could nei-
ther account for their elevated critical temperatures nor their
anomalous and doping-dependent isotope effect [14]. In the
well-underdoped nonsuperconducting regime, the cuprates
share an antiferromagnetic Mott insulating order caused by
strong repulsion in the partially filled Cu 3d band [15], and the
superconducting phase emerges, as a consequence of doping,
in the vicinity of a Mott transition. It was, for this reason, early
pointed out that the pairing mechanism ought to be mainly
of electronic or magnetic origin [16], a viewpoint which is
reinforced by the dx2−y2 symmetry of the superconducting
gap [17,18]. Unfortunately, despite the progress in the field
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of strong correlations, there is to this day still no consensus
on what mechanism or, rather, interplay of mechanisms best
describes this pairing.

The strong correlations of these materials explain the quali-
tative failure of the local density approximation (LDA), which
predicts a metal for the undoped parent compounds. The de-
ceptively simple low-energy electronic structure can be traced
back to the CuO2 sheet, in which the Cu 3dx2−y2 and O 2px/y

orbitals hybridize to form a bonding and an antibonding state
[19]. The antibonding state, which has a strong Cu 3dx2−y2

weight, forms the half-filled and well-isolated narrow band
across the Fermi level in LDA. Indeed, this antibonding
band is commonly used to model the low-energy electrons
participating in superconductivity and frequently constitutes
one of the orbitals in model Hamiltonians [20]. The additional
low-lying oxygen p bands provide a strong screening channel
that causes a substantial reduction in the effective interaction
[21].

Many pairing mechanisms have been put forward over the
last three decades. Anderson [22] suggested that strong short-
range repulsive interactions lead to spin-charge separation and
that the immense antiferromagnetic superexchange opens up
a d-wave spin gap, which by kinetic frustration converts to a
superconducting gap. The charge fluctuation mechanism dates
back to Kohn and Luttinger [23], who realized that Friedel
oscillations lead to anisotropic pairing in an isotropic electron
gas with short-range interactions at low temperatures. Numer-
ical studies within the random-phase approximation (RPA) by
Rietschel and Sham later confirmed this for a certain range
of electron densities by solving the Eliashberg equation [24].
Since spin fluctuations are believed to completely overshadow
charge fluctuations at short distances, the latter has not been
extensively investigated for the cuprates. It is conceivable
that the electron gas results persist in realistic materials, but
that the relevant length scale is significantly reduced. Indeed,
Kohn and Luttinger argued that a nonspherical Fermi surface
can drastically increase TC [23]. The screened interaction in
position representation may furnish a physical insight into this
mechanism, not easily accessible from matrix elements alone.

For the undoped cuprates we consider the famous one- and
three-band models and calculate the effective interactions U1

and U3 in the respective low-energy subspace. The metallic
band with dominating Cu 3dx2−y2 weight constitutes the one-
band subspace, whereas the three-band subspace also includes
two bonding and nonbonding bands of mainly O 2px,y charac-
ter [20]. U does not include the screening of the electrons of
the subspace, hence also the screening from the pathological
metallic band is excluded, which partly justifies the use of
LDA as a starting point. It is worth noting that the charge gap
in LCO, which is absent at the LDA level, is opened up within
LDA+DMFT when a dynamic U computed using constrained
RPA (cRPA) is used, whereas when the static value is used
the material remains metallic [21]. The measured gap of
2 eV is almost perfectly reproduced in the three-band model
and partly so in the one-band model [21], which shows that
U , when calculated within cRPA, indeed embodies dynami-
cal correlation effects required when modeling the undoped
cuprates. We also calculate the fully screened interaction W

although its interpretation demands some caution. With some
justification, it may be thought of as a crude estimation of

the screened interaction of the metallic doped system, which
could be systematically improved, for instance, by imposing
rigid shifts in the LDA band filling [25].

It should be noted that cRPA yields a spin-independent
effective interaction. However, when constructing the low-
energy model, the Pauli principle is taken into account ex-
plicitly in the model Hamiltonian by requiring the diagonal
elements of U to be zero for equal spin. As a consequence,
the effective interaction in the model between electrons with
equal spin is different from that between opposite spin.

The method for obtaining U and W in position space is
amenable to improvements beyond RPA. For example, for
small model systems, one could take into account vertex
corrections beyond RPA and compare with exact results.
However, this would not say much about bulk materials for
which our method is intended, and for which RPA is known
to perform well. While it is feasible to go beyond RPA for
small systems, it is at present not entirely clear how to do this
for large systems. One way would be to include particle-hole
interactions in the polarization diagrams. However, this would
be computationally very demanding.

This paper is organized as follows. In Sec. II, we summa-
rize the theory of the partially and fully screened Coulomb
interaction, U and W , as well as the RPA and constrained
RPA approximations. In Sec. III, the space-time computation
of W (r, r′; τ ) and U (r, r′; τ ) is described, and their interpreta-
tions are emphasized. In Sec. IV, the results for SrVO3, LCO,
and HBCO are presented and discussed and in Sec. V the main
findings are summarized.

II. SCREENED INTERACTION

A. W and RPA

Before describing the position-space computation of
W (r, r′; t − t ′) or W (r, r′; ω), we recapitulate the definition
of W from linear response theory. When applying an arbitrary
external perturbation Vext(r, t ) the induced density is to linear
order given by

δρ(r, t ) =
∫

dr′dt ′χ (r, t ; r′, t ′)Vext(r
′, t ′), (1)

where χ is the linear density response function. This causes a
change in the Hartree potential

δVH (r, t ) =
∫

dr′
v(r − r′)δρ(r′, t ), (2)

which screens the applied perturbation Vext. The resulting
change in the total potential δV = Vext + δVH is given by

δV (r, t ) = Vext(r, t ) +
∫

dr1dr2dt2v(r − r1)

×χ (r1, t ; r2, t2)Vext(r2, t2).

(3)

Schematically we may write

δV = (1 + vχ )Vext = ǫ−1Vext (4)

where we recognize that 1 + vχ is the inverse dielectric
matrix ǫ−1. If we replace our external perturbation with the
Coulomb interaction v(r − r′)δ(t − t ′) = δ(t − t ′)/|r − r′|,
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with (r′, t ′) treated as a parameter, we arrive at

W (r, r′; τ ) ≡ v(r − r′)δ(τ )

+
∫

dr1dr2v(r − r1)χ (r1, r2; τ )v(r2 − r′).

(5)

This is the definition of the screened interaction in the Hedin
equations [1]. The second term, vχv, which is the screening
contribution to W , is usually denoted by W c, a notation we
will adopt in the following. We have made use of the fact that
χ depends only on relative time τ = t − t ′ for a system with
time-independent Hamiltonian. W (r, r′; τ ) is the effective
interaction between two electrons at r, t and r′, t ′ and contains
a retarded contribution, W c, due to the dynamic response of all
electrons in the system. Within RPA, this retarded response
originates from successive particle-hole excitations caused
by the instantaneous interaction between the electrons in the
system. The Fourier component of the screened interaction is
then calculated from the following equation:

W (r, r′; ω) = v(r − r′)

+
∫

dr1dr2v(r − r1)χ (r1, r2; ω)v(r2 − r′).

(6)

The screened Coulomb interaction W is uniquely deter-
mined by the linear density response function χ = δρ/δϕ. We
can introduce the irreducible polarization propagator P, which
may be thought of as the linear density response function with
respect to the total field, P = δρ/δV . It then follows from the
chain rule that

χ = P + Pvχ (7)

and

W = v + vχv = v + vPW = v + W c. (8)

In the random-phase approximation (RPA), the polariza-
tion propagator is approximated by the response function of
a noninteracting system χ0 [1], so that the response function
takes the form

χRPA = χ0 + χ0
vχRPA, (9)

where

χ0(r, r′; ω) = 2
occ
∑

kn

unocc
∑

k′n′

χ0
nk,n′k′ (r, r′; ω)

χ0
nk,n′k′ (r, r′; ω) = φ∗

nk(r)φn′k′ (r)φnk(r′)φ∗
n′k′ (r′)

×
(

1

ω+εnk−εn′k′+i0+

−
1

ω−εnk+εn′k′−i0+

)

(10)

is equivalent to the well-known Lindhard formula [26]. Here,
φnk and εnk are paramagnetic eigenfunctions and eigenen-
ergies, typically obtained using density functional theory
(DFT). k is restricted to the first Brillouin zone. The fac-
tor of two is due to summing over the two identical spin
contributions, and the two sums are restricted to occupied
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FIG. 1. Qualitative illustration of the screened interaction W =
v + W c and its constituents v and W c in the static limit. (a) Shallow
screening hole. (b) Deep screening hole.

(occ) and unoccupied (unocc) states, respectively. Note that
Eq. (10) describes the time-ordered polarization function,
which means that the resulting screened interaction is not the
retarded, but the time-ordered W . One can recover the retarded
W by multiplying the imaginary part of the time-ordered W by
a factor of sign(ω).

A qualitative and simplified depiction of W is presented in
Fig. 1. By increasing the depth of the screening hole, the effec-
tive interaction is reduced and can even turn negative at certain
distances. The terms attraction and repulsion, however, have
to be used with caution since they originate from situations
where the interaction is radially monotonous and thus either
attractive or repulsive throughout. Still, we adopt the term
attraction if we, for a given r′, identify a negative minimum
of the interaction at r (local attraction) towards which the
classical force field is pointing.

As can be seen from Fig. 1, at very short distances to r′, the
force field is always pointing outwards, which gives a local
repulsion. This can be understood intuitively since for r → r′

there is not sufficient charge in the region between r and r′ to
create screening holes that could compensate or overcompen-
sate the Coulomb repulsion. The screening inherently depends
on the electron density in the solid. Different materials will
have different screening properties and therefore also different
shapes of W (r, r′). The placement of the point charge will
therefore also matter. If it is put at the position of a nucleus, es-
pecially of an atomic species which is an effective “screener,”
a much more reduced W emerges at short distances than from
a point charge in between two nuclei.

B. U and cRPA

To determine the effective interaction of a low-energy
model, we use the cRPA method [9,27], in which the Hilbert
space is divided into a low- and a high-energy subspace, D
and R. The polarization function is now decomposed into two
terms, P=Pd+Pr. Pd describes polarization processes within
the low-energy subspace D whereas Pr accounts for the rest
of the polarizations, i.e., those within the R subspace as well
as those between the subspaces. By defining

W r = v + vPrW r, (11)

it can be shown that [9]

W =W r+W rPdW, (12)
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which allows us to interpret W r as the effective “bare” inter-
action in D, a nonlocal and dynamical generalization of the
Hubbard on-site repulsion [10]. So,

U (r, r′; ω) ≡ W r(r, r′; ω). (13)

As in the case of W , we can write U =v+U c, where U c =
vχ r

v and χ r =Pr+Pr
vχ r. The low-energy subspace in the

Hubbard model usually corresponds to a narrow band with
strong correlations, so RPA is not expected to work well.
However, when computing U for the model, the polarization
channels within the low-energy subspace are removed from
Eq. (10), so that it is justifiable to constrain the RPA to
compute Pr = χ r0.

The physics lies in the choice of the low-energy model
subspace. For the low-energy bands of the cuprates, which are
entangled, we use the “disentanglement” schemed developed
in Ref. [28] and define the D subspace in terms of maximally
localized Wannier functions [29] and the R subspace as the
orthogonal space. Computational details for the calculation of
U in the cuprates and in SrVO3 are provided in Appendix.

III. POSITION REPRESENTATION

This section deals with the computation of W in position
representation [Eq. (6)] and its interpretation in time domain.
Any expression for W has an analog for U obtained by
replacing χ0 with χ r0.

A. Product basis

To expand the polarization χ0 and response function χRPA,
we need a set of two-particle basis functions in the form of
a product basis {Bk

α}. This basis can be tailored to give a
complete representation of χ0 and be optimized such that a
minimal number of basis functions is needed [30,31]

χ0(r, r′; ω) =
∑

k,αβ

Bk
α (r)χ0k

αβ (ω)Bk∗
β (r′). (14)

From χRPA = χ0 + χ0
vχ0 + . . . , it is clear that the product

basis is also complete for representing χRPA(r, r′; ω), since v

is always sandwiched between two χ0 so that it is immaterial
whether the product basis is complete or not for v. In other
words, only the projection of v in the subspace of χ0 is
needed. In fact, the product basis constructed for χ0 is in
general far from complete for representing v(r − r′). Since
W = v + vχRPA

v within RPA, this implies that the product
basis in general cannot be used for a complete representation
of W (r, r′; ω). The way around this problem is explained in
the following.

B. W and U in position space

Figure 2 shows the steps involved to obtain the matrix ele-
ments χRPA

αβ (k; ω) within RPA and χ
r,RPA
αβ (k; ω) within cRPA.

These matrix elements together with the product basis com-
pletely determine W (r, r′; ω). Since W partly consists of the
bare Coulomb interaction v, which is known analytically, it is
sufficient to find an expression for W c. Schematically, if we let
matrix elements be underlined, Eq. (14) reads χ0 = Bχ0B∗.

Similarly, within RPA it also holds that χRPA = BχRPAB∗,

which implies, together with Eq. (6), that W c = vχRPA
v =

FIG. 2. Schematics outlining the generation of matrix elements
of χ (green box) used for the computation of W and U in position
representation (red box). W [δ], U [δ] and W [�], U [�] are defined in
Sec. III C.

(vB)χRPA(vB)∗. We have now obtained a basis which is
complete for W c. Explicitly,

W c(r, r′; ω) =
∑

k,αβ

I
k
α (r)χRPA

αβ (k; ω)Ik∗
β (r′), (15)

where

I
k
α (r) =

∫

dr1v(r − r1)Bk
α (r1), (16)

χRPA
αβ (k; ω) =

〈

B̃k
α

∣

∣χRPA(ω)
∣

∣B̃k
β

〉

. (17)

Equations (15)–(17) are the main equations for obtaining W in
position representation. In general, the set of functions {B̃k

α} is
biorthogonal to the set {Bk

α} and fulfills Eqs. (18)–(20).
After having obtained all matrix elements χRPA

αβ (k; ω),
what remains is to calculate the basis-dependent integrals
Ik

α (r) as well as including the Ŵ-point contribution in a
suitable way. We will explain both steps in the following,
but first we present the product basis, constructed in the SPEX

code, which has been used in this work.

1. Mixed product basis

The mixed product basis is an extension of the optimized
product basis within the full-potential linearized augmented
plane-wave (FLAPW) method [32,33], where space is sepa-
rated into spherical “muffin-tin” (MT) spheres around each
atom as well as the “interstitial region” (IR), which constitutes
the remaining region of space. In the MT spheres, the prod-
uct basis functions Bk

aLMP(r) = baLP(r)YLM (r̂) are constructed
from products of the MT functions of the LAPW basis. Here,
a is an orbital index, L and M denote the orbital and mag-
netic quantum numbers, respectively, and P is an index for
different radial functions. In the IR, products of plane waves,
which are themselves plane waves Bk

G(r) = ei(k+G)·r/
√

� are
constructed, where � is the unit cell volume. The resulting
“mixed product basis” functions [32]

{

Bk
α

}

=
{

Bk
aLMP, Bk

G

}

, (18)

〈

Bk
α

∣

∣B̃k
β

〉

= δαβ , (19)

∑

α

∣

∣Bk
α

〉〈

B̃k
α

∣

∣ = 1. (20)
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are either nonzero only in the MT spheres or in the IR. Eq. (20)
holds in the subspace of χRPA.

2. Muffin-tin contribution

We start our position space reconstruction by considering
the MT spheres, where α = a, L, M, P. By defining

r1 = ra + a, (21)

where ra is confined to a MT of radius Ra and a is the
vector pointing to the atomic center of a, Eq. (16) can be
re-expressed as

I
k
α (r) =

∫

Ra

dra

∑

T

eik·(a+T)

|ra + a + T − r|
Bk

α (ra), (22)

Bk
α (ra) = bα (ra)YLM (r̂a). (23)

Here we made use of Bloch’s theorem and the sum runs over
all lattice vectors {T}. However, Ik

α (r) does not converge for
a finite sum over T due to the long-range integrand, so we
perform Ewald summation to resolve this issue (red box in
Fig. 2). For k �= Ŵ and with q = k + G, where k is restricted
to the first Brillouin zone and G is a reciprocal lattice vector,
Ewald’s formula reads [34]

∑

T

eik·T

|r − r1 − T|
=

4π

�

∑

G

e−q2/4γ 2

q2
eiq·(r−r1 )

+ γ
∑

T

erfc(γ |r − r1 − T|)
γ |r − r1 − T|

eik·T. (24)

For γ → 0, the real-space sum is recovered, and, for γ → ∞,
the second term vanishes and the real-space sum is replaced
by a summation in reciprocal space. For a properly chosen γ ,
however, the expression is short-ranged in both |r − T| and q.

We separate Ik
α (r) into Ik(1)

α (r) and Ik(2)
α (r), resulting from

the sums over G and T, respectively. We define Aγ (q) ≡
(4π/�)exp(−q2/4γ 2)/q2 and make a plane-wave expansion
in spherical harmonics

e−iq·ra = 4π

∞
∑

L=0

(−i)L jL(qra)
L

∑

M=−L

Y ∗
LM (r̂a)YLM (q̂), (25)

where jL are the spherical Bessel functions. This yields for the
first term

I
k(1)
α (r) = 4π (−i)L

∫ Ra

0
drar2

abα (ra)

×
∑

G

Aγ (q) jL(qra)YLM (q̂)eiq·re−iG·a. (26)

Introducing raT =r−a−T, the second term, Ik(2)
α (r), di-

verges if |ra − raT| → 0. To resolve this issue, we make use

of the expansion

erfc(γ |ra − raT|)
γ |ra − raT|

=
∞

∑

L=0

4π

2L + 1

[

rL
<

γ rL+1
>

− gL(ra, raT)

]

×
L

∑

M=−L

Y ∗
LM (r̂a)YLM (r̂aT), (27)

where r< = min(ra,raT) and r> = max(ra,raT). Note that the
majority of the terms, corresponding to translations T that
cause no divergence, can be integrated without the use of
this expansion. For brevity, we here keep the expansion in all
terms, and arrive at

I
k(2)
α (r) =

4πγ

2L + 1

∫ Ra

0
drar2

abα (ra)

×
∑

T

[

rL
<

γ rL+1
>

− gL(ra, raT)

]

YLM (r̂aT)eik·(a+T).

(28)

The coefficients gL are computed as

4π

2L + 1
gL(ra, raT)YLM (r̂aT)

=
∫

d�a

erf(γ |ra − raT|)
γ |ra − raT|

YLM (r̂a) (29)

using Gaussian integration, meaning that any angular integral
∫

d� f (�) is replaced by
∑

i wi f (�i ) where the weights wi

are tabulated and independent of f . In particular, we used
114 cubic directions �i, which yields exact results for angular
momentum components L � 15 [35].

3. Interstitial contribution

We now consider the IR, where α = G. By extending
Bk

G(r) = eiq·r/
√

� to all of space and subtracting the muffin-
tin contribution, we can write

I
k
G(r) =

∫

dr1
1

|r1−r|
Bk

G(r1)

−
∑

a

∫

Ra

dra

∑

T

eik·(a+T)eiG·a

|ra+a+T−r|
Bk

G(ra), (30)

where we have made use of the fact that Bk
G(ra + T) =

eik·TBk
G(ra). The first term reads

I
k(0)
G (r) =

4π
√

�q2
eiq·r. (31)

We divide the rest into I
k(1)
G (r) + I

k(2)
G (r) from both terms

in the Ewald summation in the same manner as before, and
analogously we obtain

I
k(1)
G (r) = −4π

∑

a

∫ Ra

0
drar2

a

∑

G′

Aγ (q′) j0(|G − G′|ra)

×
1

√
�

eiq′·rei(G−G′ )·a, (32)
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I
k(2)
G (r) = −

(4π )2γ
√

�

∑

a

∫ Ra

0
drar2

a

∑

T

∞
∑

L=0

iL

2L+1

×
[

rL
<

γ rL+1
>

− gL(ra, raT)

]

jL(qra)

×
L

∑

M=−L

YLM (r̂aT)Y ∗
LM (q̂)eiq·(a+T), (33)

where q′ = k + G′. Terms in I
k(1)
G with L > 4 are very small

and excluded in this work.

4. Ŵ-point contribution

What is left at this point is to calculate the Ŵ-point con-
tribution to Eq. (15), which requires special treatment since
the bare interaction v diverges as 1/k2 for k →0. In SPEX, the
divergence is treated analytically by rotating to the Coulomb
eigenbasis [36]

Ek
µ(r)=

∑

α

T k
µαBk

α (r). (34)

When k → 0, Ek
µ=1(r) → 1/

√
� corresponds to the divergent

eigenvalue of v and the matrix element W c
µ=1,ν=1(k; ω), which

diverges like 1/k2, just shifts W c(r, r′; ω) uniformly to lead-
ing order [32]. W c

µ=1,ν>1(k; ω) and W c
µ>1,ν=1(k; ω) diverge

only like 1/k and are much smaller and, for this reason,
neglected in this work. This simplification corresponds to
making W c block diagonal in the Coulomb basis. The large
block W c

µ>1,ν>1(k; ω) does not contain any divergence, and we
therefore rotate it back to the mixed product basis. We then get
the Ŵ-point contribution to W c:

W c
k=0(r, r′; ω) =

∫

Ŵ

dkEk
1 (r)W c

11(k; ω)Ek∗
1 (r′)

+
∑

αβ

Ĩ
0
α (r)χRPA

αβ (0; ω)Ĩ0∗
β (r′), (35)

where

Ĩ
0
α (r) =

∑

µ>1

(

T −1
)0

αµ

∫

dr1v(|r − r1|)E0
µ(r1). (36)

Ĩ0
α is calculated in the same way as Ik

α . Because of the
divergent behavior of W c ∼ 1/k2, the Brillouin-zone inte-
gration cannot be approximated by a finite summation as
in Eq. (15). Therefore, we have replaced the k sum by an
integral

∫

Ŵ
, which could be understood as an integration over

a finite region around k = 0. In practice, we use instead
an integration over the whole reciprocal space, not of 1/k2

(which would yield infinity), but of e−ǫk2
/k2 with a small

positive coefficient ǫ, and subtract a double-counting correc-
tion given by the sum over the k-point set excluding the Ŵ

point. For details, see Ref. [32] and in particular Eq. (34)
therein.

C. W and U in time domain: impulse and step response

It is interesting to study the retarded interaction both re-
lated to the impulse response and the step response of a solid.

The former is to linear order given by W (r, r′; τ ), and we
show below that the latter is accessible from the same quantity.

The interpretation of W is provided in Sec. II A. Since it
was obtained from linear response theory by replacing the
external potential with the instantaneous Coulomb interaction,
v(r − r′)δ(τ ), we here denote it by W [δ]. W [δ] is connected
to the impulse response of the system, and is obtained by a
simple inverse Fourier transform of W (ω):

W (r, r′; τ )[δ] ≡ W (r, r′; τ ) =
∫

dω

2π
e−iωτW (r, r′; ω).

(37)

W (ω) is here assumed to be retarded, but the W (ω) described
in Sec. II A is time-ordered. For positive frequencies the time-
ordered and retarded W (ω) are identical, but the former is an
even function of ω whereas the latter only has an even real
part, but an odd imaginary part. By only calculating W (ω)
for positive frequencies, the correct symmetries can easily be
imposed.

As is also clear from Sec. II A, if we instead introduce a
point charge at r′, t ′ kept frozen at later times, which means
inserting v(r − r′)�(τ ) into Eq. (3), the resulting screened
potential W [�] is given by

W (r, r′; τ )[�] = v(r − r′)�(τ )

+
∫ ∞

0
dτ2

∫

dr1dr2v(r1 − r2)

×χ (r1, r2; τ − τ2)v(r2 − r′). (38)

Here, χ is the retarded response function, which is related
to its time-ordered counterpart in the same way as described
above for W . Since the retarded χ fulfills causality, the upper
limit of integration can be changed to τ2 = τ , and from the
variable substitution τ ′ = τ − τ2 we arrive at

W (r, r′; τ )[�] = v(r − r′)�(τ )

+
∫ τ

0
dτ ′

∫

dr1dr2v(r1 − r2)

×χ (r1, r2; τ ′)v(r2 − r′)

=
∫ τ

−∞
dτ ′W (r, r′; τ ′)[δ]. (39)

This equation establishes a connection between the dynami-
cally screened interaction between two electrons of the intrin-
sic system (impulse response) and the dynamically screened
potential from an impurity added to the system (step re-
sponse). It has the following limits:

W (r, r′; τ )[�] =
{

v(r − r′) , τ → 0+,

W (r, r′; ω = 0) , τ → ∞.
(40)

W [�] has dimension energy while W [δ] has dimension
energy/time.

IV. RESULTS

We will now apply our method to compute the position
representation of W and U in LCO, HBCO, and nonsuper-
conducting SrVO3. Computational details are provided in
Appendix. We focus on the cases with r′ at the transition metal
nucleus (Cu or V) as well as at the O nucleus, and with r and
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FIG. 3. Effective one- and three-band interactions, U1(r, r′; ω =
0) (solid lines) and U3(r, r′; ω = 0) (dashed lines), of the cuprates,
and t2g (three-band) interaction of SrVO3 (black dashed lines) along
different paths in the CuO2 and VO2 sheets, respectively. These paths
are indicated in each graph.

r′ restricted to the same CuO2 or VO2 sheet. Furthermore, in
all calculations, r and r′ belong to the same unit cell.

A. Static U in position space

We start by considering the static effective interaction
U (r, r′; ω=0) (Figs. 3–5). We study the one-band and three-
band models for the cuprates and compare the results with the
nonsuperconducting perovskite SrVO3 in the t2g model (see
Appendix).

An interesting finding, with r′ at the transition metal nu-
cleus, is that the t2g interaction in SrVO3 is essentially positive
in the entire unit cell while in both cuprates there is a region
close to the Cu site where U1 (U of the one-band model)
is significantly negative. This region, as illustrated in Fig. 4,
has a shape which originates mainly from the 3dx2−y2 orbital
(x2 − y2 derived) of the one-band subspace even though the
intra-band screening from this orbital is excluded in the one-
band model. Such a region does not appear in U3 (U of the
three-band model) and thus originates from the hybridization
between the Cu 3dx2−y2 orbital and the O 2px and 2py orbitals.
Since the d orbitals are localized, this hybridization is ex-
pected to be strong only in their vicinity, which is consistent
with the shape of the attractive region in U1. However, while
the dx2−y2 orbital is antisymmetric with respect to a reflection
of r = (x, y, 0) across the line x = y, the attractive region is
symmetric. This is physically clear, and can be understood
from Eq. (15). If we let R be the reflection across x = y,
we get

W c(Rr, 0; ω) =
∑

k,αβ

I
k
α (Rr)χRPA

αβ (k; ω)Ik∗
β (0). (41)

FIG. 4. Effective one-band interaction U1(r, r′; ω = 0) of the
cuprates in the CuO2 sheet.

Since

I
k
α (Rr) = I

R−1k
α (r), (42)

χRPA
αβ (k; ω) = χRPA

αβ (R−1k; ω), (43)

it follows that

W c(Rr, 0; ω) = W c(r, 0; ω). (44)

A striking difference can be seen between the cuprates in the
one-band model (Fig. 4) and SrVO3 in the t2g model (Fig. 5).
As already pointed out, in the cuprates, the region with strong
one-band attraction coincides with the region with a large
one-band density, which means that the electrons could feel
the attraction. In SrVO3, on the other hand, the region with
the modest attraction in the minimal (three-band) t2g model,
does not coincide with the region of the important in-plane xy

orbital of the model. This means that the electrons most likely
experience repulsion. This finding is backed by earlier work
[37] on the screening channels that determine U3 in SrVO3,
where if was found that O 2p-V eg transitions constitute a
stronger channel than O 2p-V t2g transitions.

It is also worth stressing, with r′ at the Cu site, the negative
U1 at the next-nearest Cu site in both cuprates. The attrac-
tion is the strongest in HBCO, for which it survives in the
three-band model. HBCO is also the only compound which
displays attraction, though weak, at the neighboring Cu site
(in the one-band model). The corresponding t2g interaction
in SrVO3 at the nearest or next-nearest neighbor V site is
significantly positive. When r′ is moved to the O site the only
identified attraction is very weak and found in the one-band

195136-7



T. J. SJÖSTRAND et al. PHYSICAL REVIEW B 99, 195136 (2019)

FIG. 5. Effective three-band interaction U3(r, r′; ω = 0) of the
cuprates and SrVO3 (t2g) in the CuO2 and VO2 sheets, respectively.

model of HBCO at the next-nearest Cu site as can be seen
in Fig. 4.

The matrix elements of the static U1 in the maximally lo-
calized Wannier orbitals are positive for both cuprates [21,38]
but the observed region between the Cu and O sites with large
negative U1 opens up a possibility of having negative matrix
elements in some other orbitals, with a large weight in the
attractive region. It is conceivable that such a basis could
be used to describe possible Cooper pairs derived entirely
from charge fluctuations. Such a basis cannot be found in
nonsuperconducting SrVO3 since the U of the t2g model is
almost entirely positive, at least in the first unit cell.

In Sec. IV C, we analyze the screening channels as-
sociated with Cu 3dx2−y2 − 3dx2−y2 as well as O 2px,y −
Cu 3dx2−y2 transitions, but first we discuss the fully
screened interaction W .

B. Static W in position space

W contains all screening channels of the system, including,
in the case of the cuprates, the spurious metallic screening

FIG. 6. W (r, r′; ω = 0) of the cuprates and SrVO3 along differ-
ent paths in the CuO2 and VO2 sheets respectively. These paths are
indicated in each graph.

due to the pathological LDA band structures. The physical
meaning of W in this case is therefore not entirely clear. With
this caveat in mind, it is nevertheless instructive to compute W

to understand the role of the screening within the antibonding
band crossing the Fermi level, which may be thought of as
modeling the screening of the doped system.

In Figs. 6 and 7, we compare W (r, r′; ω = 0) in the CuO2

sheets of the cuprates with that of the VO2 sheet of SrVO3.
When choosing r′ at the Cu or V site, large regions appear
with negative W in all of the compounds, but with a larger
magnitude in the cuprates than in SrVO3 (−6 versus −3 eV).
This can be understood by observing that in the case of the
cuprates, W is obtained by screening U1 with Cu 3dx2−y2 −
3dx2−y2 transitions, which have the same shape as U1 itself.
The screening in the x2 − y2 channel is thereby enhanced. In
SrVO3, on the other hand, the screening in the xy channel
essentially only originates from within the t2g subspace, since
there are no close-by orbitals outside the subspace to hybridize
with.

To investigate whether the x2 − y2-derived shape of W , that
can be seen in Fig. 7, is consistent with a superconducting
gap with x2 − y2 symmetry, we consider the superconducting
DFT (SCDFT) gap equation. When excluding the effect of
phonons, the SCDFT gap equation contains only the Kohn-
Sham eigenenergies εnk and the static W and reads [7,8]

�n(k) = −
1

2

∑

n′k′

Wnn′ (k − k′; 0)
tanh

(β

2
En′k′

)

En′k′
�n′ (k′), (45)

where Enk = ((εnk − µ)2 + |�nk|2)1/2. Furthermore, if W or
� have certain symmetries under a unitary transformation S

in position representation, this holds analogously in reciprocal
space. Since we are only interested in the symmetry of the
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FIG. 7. W (r, r′; ω = 0) of the cuprates and SrVO3 in the CuO2

and VO2 sheets, respectively.

gap �, we simplify the equation by linearizing it around T =
TC , where �nk is small. Since the ratio tanh( β

2 En′k′ )/En′k′ is a
quickly decaying function we only keep the diagonal matrix
element of W from the band that crosses the Fermi level. We
can then drop the band index completely and obtain

�(k) ≈ −
β

4

∑

k′

W (k − k′; 0)�(k′). (46)

The symmetry can now be deduced by considering a 3 × 3 k

mesh, corresponding to the first Brillouin zone, for which we
make the posteriori ansatz

W =





c b c

b a b

c b c



, � =





0 −� 0
� 0 �

0 −� 0



, (47)

where the mid element corresponds to the Ŵ point. By in-
serting this ansatz in (46) and recalling that β ≈ 1/kBTC the
relation

b ≈ 2c − a − 4kBTC (48)

FIG. 8. [W − U1](r, r′; ω = 0) (solid lines) and [U1 − U3]
(r, r′; ω = 0) (dashed lines) in the cuprates along different paths in
the CuO2 sheet, which are indicated in each graph.

is obtained. Note that TC is the critical temperature obtained
from W , which in general is smaller or equal to the true critical
temperature, depending on what correlations are included
(plasmons in this work). Since the Ŵ-point contribution, a, is
in general large and positive for W this relation means that a
nonzero � is possible only for sufficiently negative b.

Equation (48) confirms that the calculated shape of W is
consistent with a superconducting gap of x2 − y2 symmetry.
A similar ansatz could be made in the xy channel for SrVO3,
and it is plausible that the equivalent condition is not fulfilled
since the strength of attraction in the xy channel in SrVO3

(Fig. 7) is only half that found in the x2 − y2 channel in
the cuprates. An unfulfilled condition implies that � is zero
throughout, which obviously is true for nonsuperconducting
SrVO3.

C. Screening channels in position space

Different polarization channels enter χRPA in a nonlinear
fashion. With the definition that the “pd screening” comes
from all terms in χRPA, which contain O 2px,y − Cu 3dx2−y2

transitions to linear order or higher, the resulting contribution
to the effective interaction is exactly U1 − U3 (Figs. 8 and 9).
In the same manner, W − U1 (Figs. 8 and 10) is the contribu-
tion from the “dd screening.” However, the Cu dx2−y2 band in
the one- and three-band models are not exactly identical. For
this reason, in the computation of U1 − U3, we calculate not
only U3 but also U1 from the three-band interpolation.

In agreement with earlier studies of LCO, [21] the pd

screening has most of its weight at the Cu site. It is clear from
Fig. 8 that the metallic dd screening is stronger and has longer
range than the pd screening. The striking similarity between
the results for LCO and HBCO indicate that the screening of
the cuprates is generic, although the actual strength is material
specific.
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FIG. 9. [U1 − U3](r, r′; ω = 0) in the CuO2 sheet of the cuprates.

D. W and U in time domain

The screened interaction W (r, r′; τ ) in time domain (W [δ]
in Sec. III C) is presented in Fig. 11 together with W c(r, r′; ω)
for LCO, HBCO and SrVO3, with r and r′ at the same
transition metal nucleus (Cu or V).

W shares a common characteristic feature in time do-
main in all compounds. Shortly after the instantaneous bare

FIG. 10. [W − U1](r, r′; ω = 0) in the CuO2 sheet of the cuprates.

interaction, there is a sudden surge of screening holes, which
causes the large dip seen in W . W then starts to oscillate,
with a dominating characteristic frequency corresponding
to the main collective charge excitation (plasmon) of the
system. This is superimposed by oscillations with different
frequencies, corresponding to subplasmons of the system.
Gradually, the oscillations decay and almost vanish after 2000
attoseconds. This can be understood by considering the simple
model (ωn > 0)

W c(ω) = −
1

π

M
∑

n=1

Wn

[(

ω + ωn

(ω + ωn)2 + δ2
−

ω − ωn

(ω − ωn)2 + δ2

)

+ i

(

πδ(ω+ωn) + πδ(ω − ωn)

)

sgn(ω)

]

, (49)

where the imaginary part is assumed to be a series of sharp
δ functions, each representing a subplasmon excitation with
an appropriate weight Wn > 0. Inverse Fourier transformation
leads to

W c(τ ) = −
2

π

M
∑

n=1

Wn sin(ωnτ )e−δ|τ |�(τ ). (50)

The behavior of W c(τ ) for small τ is governed by the high-
frequency features of W c(ω) and the dominating oscillation is
determined by the bulk plasmon of the system. This explains
the similar behavior for small τ in all the compounds in
Fig. 11 since the high-frequency electron gas-like bulk plas-
mon is usually present in real materials. Subplasmons of lower
frequencies, on the other hand, are rather material specific and
determine the behavior of W c(τ ) at large τ . Indeed, in the
time window between 1000 and 2000 attoseconds, W c(τ ) still
displays dramatic oscillations with strong attraction in both
cuprates (mainly HBCO), but not in SrVO3.

In Fig. 12, we display the behavior of W and U3 in time-
domain when an impurity is added to the system at t = 0
and then left frozen at its position (see Sec. III C). As should
be the case, the long-time limits equal the static (ω = 0)
values of W and U3. U3 is presented, but not U1, because
the static limit of the former is positive, whereas the static
limit of U1 is negative, just like that of W . The result for U3

brings to light the presence of time intervals with a negative
interaction, despite the static limit being positive. This shows
the relevance of taking into account frequency dependence
when utilizing W or U to model superconductivity.

V. SUMMARY AND CONCLUSIONS

We have presented a method for computing the position
representation of the effective electron-electron interaction
U in real materials and generalized the picture in time do-
main to include the study of static impurities. This basis-
independent space-time approach is complementary to matrix
element studies and allows for an unbiased perspective on the
screening in real materials. This can be used to construct more
suitable models of strongly correlated materials.

As an illustration, we have applied the method within
LDA cRPA to calculate the effective interactions in two
well-known cuprate parent compounds, LCO and HBCO,
as well as in the prototype of correlated metals, SrVO3.
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FIG. 11. W c(r, r′; ω) and W (r, r′; τ )[δ] of the cuprates and SrVO3 with r = r′ at the Cu/V nucleus.

We first studied the r dependence of U (r, r′; ω = 0), both
with r′ put at a transition metal nucleus (Cu or V) and
at an in-plane O nucleus. In the t2g model of SrVO3, with
r′ at the V nucleus, only a small region with weak attrac-
tion was found, which did not match the shape of the xy

low-energy orbital of the model. In the one-band model of
the cuprates, on the other hand, a strong attractive interaction
was found at the exact region of the low-energy 3dx2−y2

orbital. Although this does not imply that charge fluctuations
mediate Cooper pairing in the cuprates, they may assist other
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FIG. 12. W (r, r′; τ )[�] of the cuprates with r and r′ at the same Cu nucleus as well as U3(r, r′; τ )[�] with r and r′ at the same Cu nucleus
or at neighboring Cu nuclei.

agents such as phonons and spin fluctuations in inducing
pairing.

The temporal interaction exhibited generic damped oscil-
lations in all compounds. Its time integral was shown to be

the potential caused by inserting an impurity at τ = 0, and the
results for the three-band model illustrated the possibility of
finite-time overscreening, with an attractive effective interac-
tion, despite the static limit being repulsive.
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FIG. 13. LDA Band structures (µ at 0) and crystal structure data of SrVO3, LCO, and HBCO. Ŵ = (0, 0, 0), X = (π/a, 0, 0), and K =
(π/a, π/a, 0).
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APPENDIX: COMPUTATIONAL DETAILS

We use the DFT code FLEUR [39] which utilizes the full-
potential linearized augmented plane-wave (FLAPW) method
to obtain all eigenfunctions φnk and eigenvalues εnk. All cal-
culations are performed using the LDA. The band structures
of HBCS, LCO, and SrVO3 are provided in Fig. 13 together
with their crystal structures [40–42]. In LCO and HBCO, we
study U in the well-established one- and three-band models,
the former with a single Wannier function at Cu with dx2−y2

symmetry and the latter also with two additional Wannier
functions at the in-plane O atoms with px and py symmetry,
respectively. For comparison, we also study U in SrVO3 in the
t2g model, with three Wannier functions at V with dxy, dxz and
dyz symmetry. The Wannier interpolated band structures are
provided together with the LDA band structures in Fig. 13.

For the calculation of the RPA response matrix elements
in the mixed product basis, χRPA

αβ (k; ω), we employ the SPEX

code [39], which uses the ab initio LDA eigensolution as
the unperturbed mean-field reference system. The response
matrix is then utilized to compute W and U in position
representation in the way we have described in the present
paper. Since the full frequency dependence is required for
the calculation of the real-time dynamics, we have taken
care to include all relevant screening processes, also virtual
transitions from low-lying semicore states: Cu 3p and V 3p.
These states play an important role for large values of ω, and
it is indeed the 3p local orbitals which are responsible for the
large peak structures at around 100 eV in Fig. 11. In time
domain, this only affects the first main interaction minimum.
The interesting time interval around 1–2 fs is essentially
unaffected.

Surprisingly, the calculation turned out to be well con-
verged with a sparse 4 × 4 × 4 k-mesh. The effect of increas-
ing the mesh size to 8 × 8 × 8 was minimal. All calculations
are therefore performed using a k mesh of size 4 × 4 × 4.
The CuO2 sheets are, for simplicity, assumed to be perfectly
two-dimensional without any buckling.
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