000865138 001__ 865138
000865138 005__ 20240619091251.0
000865138 0247_ $$2doi$$a10.1021/acsami.9b11774
000865138 0247_ $$2ISSN$$a1944-8244
000865138 0247_ $$2ISSN$$a1944-8252
000865138 0247_ $$2pmid$$apmid:31424902
000865138 0247_ $$2WOS$$aWOS:000486360500020
000865138 037__ $$aFZJ-2019-04690
000865138 082__ $$a600
000865138 1001_ $$00000-0003-4289-2943$$aZips, Sabine$$b0
000865138 245__ $$aFully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications
000865138 260__ $$aWashington, DC$$bSoc.$$c2019
000865138 3367_ $$2DRIVER$$aarticle
000865138 3367_ $$2DataCite$$aOutput Types/Journal article
000865138 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568639897_13616
000865138 3367_ $$2BibTeX$$aARTICLE
000865138 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865138 3367_ $$00$$2EndNote$$aJournal Article
000865138 520__ $$aMicroelectrode arrays (MEAs) are widely used platforms in bioelectronics to study electrogenic cells. In recent years, the processing of conductive polymers for the fabrication of three-dimensional electrode arrays has gained increasing interest for the development of novel sensor designs. Here, additive manufacturing techniques are promising tools for the production of MEAs with three-dimensional electrodes. In this work, a facile additive manufacturing process for the fabrication of MEAs that feature needle-like electrode tips, so-called μ-needles, is presented. To this end, an aerosol-jet compatible PEDOT:PSS and multiwalled carbon nanotube composite ink with a conductivity of 323 ± 75 S m–1 is developed and used in a combined inkjet and aerosol-jet printing process to produce the μ-needle electrode features. The μ-needles are fabricated with a diameter of 10 ± 2 μm and a height of 33 ± 4 μm. They penetrate an inkjet-printed dielectric layer to a height of 12 ± 3 μm. After successful printing, the electrochemical properties of the devices are assessed via cyclic voltammetry and impedance spectroscopy. The μ-needles show a capacitance of 242 ± 70 nF at a scan rate of 5 mV s–1 and an impedance of 128 ± 22 kΩ at 1 kHz frequency. The stability of the μ-needle MEAs in aqueous electrolyte is demonstrated and the devices are used to record extracellular signals from cardiomyocyte-like HL-1 cells. This proof-of-principle experiment shows the μ-needle MEAs’ cell-culture compatibility and functional integrity to investigate electrophysiological signals from living cells.
000865138 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000865138 588__ $$aDataset connected to CrossRef
000865138 7001_ $$00000-0002-2696-7725$$aGrob, Leroy$$b1
000865138 7001_ $$00000-0003-1063-8342$$aRinklin, Philipp$$b2
000865138 7001_ $$00000-0002-9060-884X$$aTerkan, Korkut$$b3
000865138 7001_ $$0P:(DE-HGF)0$$aAdly, Nouran Yehia$$b4
000865138 7001_ $$00000-0002-6943-737X$$aWeiß, Lennart Jakob Konstantin$$b5
000865138 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b6
000865138 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b7$$eCorresponding author
000865138 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.9b11774$$gVol. 11, no. 36, p. 32778 - 32786$$n36$$p32778 - 32786$$tACS applied materials & interfaces$$v11$$x1944-8252$$y2019
000865138 8564_ $$uhttps://juser.fz-juelich.de/record/865138/files/acsami.9b11774.pdf$$yRestricted
000865138 8564_ $$uhttps://juser.fz-juelich.de/record/865138/files/acsami.9b11774.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865138 909CO $$ooai:juser.fz-juelich.de:865138$$pVDB
000865138 9101_ $$0I:(DE-HGF)0$$60000-0003-4289-2943$$aExternal Institute$$b0$$kExtern
000865138 9101_ $$0I:(DE-HGF)0$$60000-0002-2696-7725$$aExternal Institute$$b1$$kExtern
000865138 9101_ $$0I:(DE-HGF)0$$60000-0003-1063-8342$$aExternal Institute$$b2$$kExtern
000865138 9101_ $$0I:(DE-HGF)0$$60000-0002-9060-884X$$aExternal Institute$$b3$$kExtern
000865138 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000865138 9101_ $$0I:(DE-HGF)0$$60000-0002-6943-737X$$aExternal Institute$$b5$$kExtern
000865138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b6$$kFZJ
000865138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b7$$kFZJ
000865138 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000865138 9141_ $$y2019
000865138 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865138 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865138 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865138 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2017
000865138 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865138 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865138 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865138 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865138 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865138 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865138 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2017
000865138 920__ $$lyes
000865138 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000865138 980__ $$ajournal
000865138 980__ $$aVDB
000865138 980__ $$aI:(DE-Juel1)ICS-8-20110106
000865138 980__ $$aUNRESTRICTED
000865138 981__ $$aI:(DE-Juel1)IBI-3-20200312