001     865138
005     20240619091251.0
024 7 _ |a 10.1021/acsami.9b11774
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a pmid:31424902
|2 pmid
024 7 _ |a WOS:000486360500020
|2 WOS
037 _ _ |a FZJ-2019-04690
082 _ _ |a 600
100 1 _ |a Zips, Sabine
|0 0000-0003-4289-2943
|b 0
245 _ _ |a Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications
260 _ _ |a Washington, DC
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568639897_13616
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microelectrode arrays (MEAs) are widely used platforms in bioelectronics to study electrogenic cells. In recent years, the processing of conductive polymers for the fabrication of three-dimensional electrode arrays has gained increasing interest for the development of novel sensor designs. Here, additive manufacturing techniques are promising tools for the production of MEAs with three-dimensional electrodes. In this work, a facile additive manufacturing process for the fabrication of MEAs that feature needle-like electrode tips, so-called μ-needles, is presented. To this end, an aerosol-jet compatible PEDOT:PSS and multiwalled carbon nanotube composite ink with a conductivity of 323 ± 75 S m–1 is developed and used in a combined inkjet and aerosol-jet printing process to produce the μ-needle electrode features. The μ-needles are fabricated with a diameter of 10 ± 2 μm and a height of 33 ± 4 μm. They penetrate an inkjet-printed dielectric layer to a height of 12 ± 3 μm. After successful printing, the electrochemical properties of the devices are assessed via cyclic voltammetry and impedance spectroscopy. The μ-needles show a capacitance of 242 ± 70 nF at a scan rate of 5 mV s–1 and an impedance of 128 ± 22 kΩ at 1 kHz frequency. The stability of the μ-needle MEAs in aqueous electrolyte is demonstrated and the devices are used to record extracellular signals from cardiomyocyte-like HL-1 cells. This proof-of-principle experiment shows the μ-needle MEAs’ cell-culture compatibility and functional integrity to investigate electrophysiological signals from living cells.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Grob, Leroy
|0 0000-0002-2696-7725
|b 1
700 1 _ |a Rinklin, Philipp
|0 0000-0003-1063-8342
|b 2
700 1 _ |a Terkan, Korkut
|0 0000-0002-9060-884X
|b 3
700 1 _ |a Adly, Nouran Yehia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Weiß, Lennart Jakob Konstantin
|0 0000-0002-6943-737X
|b 5
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 6
700 1 _ |a Wolfrum, Bernhard
|0 P:(DE-Juel1)128745
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acsami.9b11774
|g Vol. 11, no. 36, p. 32778 - 32786
|0 PERI:(DE-600)2467494-1
|n 36
|p 32778 - 32786
|t ACS applied materials & interfaces
|v 11
|y 2019
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/865138/files/acsami.9b11774.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/865138/files/acsami.9b11774.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:865138
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0003-4289-2943
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0002-2696-7725
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0003-1063-8342
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-9060-884X
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0002-6943-737X
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128745
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21