001     865195
005     20210130002938.0
024 7 _ |a 10.2967/jnumed.119.234757
|2 doi
024 7 _ |a 0022-3123
|2 ISSN
024 7 _ |a 0097-9058
|2 ISSN
024 7 _ |a 0161-5505
|2 ISSN
024 7 _ |a 1535-5667
|2 ISSN
024 7 _ |a 2159-662X
|2 ISSN
024 7 _ |a 2128/24639
|2 Handle
024 7 _ |a pmid:31519802
|2 pmid
024 7 _ |a WOS:000530831100030
|2 WOS
037 _ _ |a FZJ-2019-04731
082 _ _ |a 610
100 1 _ |a Maurer, Gabriele D
|0 0000-0001-7329-6007
|b 0
245 _ _ |a 18 F-FET PET imaging in differentiating glioma progression from treatment-related changes – a single-center experience
260 _ _ |a New York, NY
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1585832734_10314
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In glioma patients, differentiation between tumor progression (TP) and treatment-related changes (TRCs) remains challenging. Difficulties in classifying imaging alterations may result in a delay or an unnecessary discontinuation of treatment. PET using O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) has been shown to be a useful tool for detecting TP and TRCs. Methods: We retrospectively evaluated 127 consecutive patients with World Health Organization grade II–IV glioma who underwent 18F-FET PET imaging to distinguish between TP and TRCs. 18F-FET PET findings were verified by neuropathology (40 patients) or clinicoradiologic follow-up (87 patients). Maximum tumor-to-brain ratios (TBRmax) of 18F-FET uptake and the slope of the time–activity curves (20–50 min after injection) were determined. The diagnostic accuracy of 18F-FET PET parameters was evaluated by receiver-operating-characteristic analysis and χ2 testing. The prognostic value of 18F-FET PET was estimated using the Kaplan–Meier method. Results: TP was diagnosed in 94 patients (74%) and TRCs in 33 (26%). For differentiating TP from TRCs, receiver-operating-characteristic analysis yielded an optimal 18F-FET TBRmax cutoff of 1.95 (sensitivity, 70%; specificity, 71%; accuracy, 70%; area under the curve, 0.75 ± 0.05). The highest accuracy was achieved by a combination of TBRmax and slope (sensitivity, 86%; specificity, 67%; accuracy, 81%). However, accuracy was poorer when tumors harbored isocitrate dehydrogenase (IDH) mutations (91% in IDH-wild-type tumors, 67% in IDH-mutant tumors, P < 0.001). 18F-FET PET results correlated with overall survival (P < 0.001). Conclusion: In our neurooncology department, the diagnostic performance of 18F-FET PET was convincing but slightly inferior to that of previous reports.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brucker, Daniel P
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 2
700 1 _ |a Filipski, Katharina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Filss, Christian P
|0 P:(DE-Juel1)141877
|b 4
700 1 _ |a Mottaghy, Felix M.
|0 P:(DE-Juel1)132318
|b 5
|u fzj
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 6
700 1 _ |a Steinbach, Joachim P
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hattingen, Elke
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 9
|e Corresponding author
773 _ _ |a 10.2967/jnumed.119.234757
|g p. jnumed.119.234757 -
|0 PERI:(DE-600)2040222-3
|n 4
|p 505-511
|t Journal of nuclear medicine
|v 61
|y 2020
|x 2159-662X
856 4 _ |y Published on 2019-09-13. Available in OpenAccess from 2020-03-13.
|u https://juser.fz-juelich.de/record/865195/files/Maurer_2019_Post%20Print_J%20Nucl%20Med_18F-FET%20PET%20imaging%20in%20differentiating%20glioma%20progression%20from%20treatment-related%20changes.pdf
856 4 _ |y Published on 2019-09-13. Available in OpenAccess from 2020-03-13.
|x pdfa
|u https://juser.fz-juelich.de/record/865195/files/Maurer_2019_Post%20Print_J%20Nucl%20Med_18F-FET%20PET%20imaging%20in%20differentiating%20glioma%20progression%20from%20treatment-related%20changes.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865195
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)141877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132318
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131777
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NUCL MED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21