001     865200
005     20210130002942.0
024 7 _ |a 10.1021/acssynbio.9b00108
|2 doi
024 7 _ |a altmetric:65662282
|2 altmetric
024 7 _ |a pmid:31465206
|2 pmid
024 7 _ |a WOS:000487577300010
|2 WOS
024 7 _ |a 2128/23386
|2 Handle
037 _ _ |a FZJ-2019-04736
082 _ _ |a 570
100 1 _ |a Wynands, Benedikt
|0 0000-0001-8599-3205
|b 0
245 _ _ |a Streamlined Pseudomonas taiwanensis VLB120 Chassis Strains with Improved Bioprocess Features
260 _ _ |a Washington, DC
|c 2019
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1569390998_13970
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Biotechnologie 1
520 _ _ |a Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host’s efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Otto, Maike
|0 P:(DE-Juel1)176853
|b 1
700 1 _ |a Runge, Nadine
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Preckel, Sarah
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Polen, Tino
|0 P:(DE-Juel1)128982
|b 4
700 1 _ |a Blank, Lars M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wierckx, Nick
|0 P:(DE-Juel1)176653
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acssynbio.9b00108
|g p. acssynbio.9b00108
|0 PERI:(DE-600)2644383-1
|n 9
|p 2036-2050
|t ACS synthetic biology
|v 8
|y 2019
|x 2161-5063
856 4 _ |u https://juser.fz-juelich.de/record/865200/files/acssynbio.9b00108.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/865200/files/acssynbio.9b00108.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-08-29. Available in OpenAccess from 2020-08-29.
|u https://juser.fz-juelich.de/record/865200/files/Streamlined_chassis_author%20copy.pdf
856 4 _ |y Published on 2019-08-29. Available in OpenAccess from 2020-08-29.
|x pdfa
|u https://juser.fz-juelich.de/record/865200/files/Streamlined_chassis_author%20copy.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865200
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176853
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128982
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)176653
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS SYNTH BIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS SYNTH BIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21