000865211 001__ 865211
000865211 005__ 20220930130219.0
000865211 020__ $$a978-3-95806-417-1
000865211 0247_ $$2Handle$$a2128/23070
000865211 0247_ $$2URN$$aurn:nbn:de:0001-2019100920
000865211 037__ $$aFZJ-2019-04745
000865211 041__ $$aEnglish
000865211 1001_ $$0P:(DE-Juel1)167345$$aQuade, Maria$$b0$$eCorresponding author$$ufzj
000865211 245__ $$aPartitioning Water Vapor Fluxes by the Use of Their Water Stable Isotopologues: From the Lab to the Field$$f2015-08-01 - 2019-06-25
000865211 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2019
000865211 300__ $$a113
000865211 3367_ $$2DataCite$$aOutput Types/Dissertation
000865211 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000865211 3367_ $$2ORCID$$aDISSERTATION
000865211 3367_ $$2BibTeX$$aPHDTHESIS
000865211 3367_ $$02$$2EndNote$$aThesis
000865211 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1593417076_16974
000865211 3367_ $$2DRIVER$$adoctoralThesis
000865211 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v469
000865211 502__ $$aDissertation, Univ. Bonn, 2019$$bDissertation$$cUniv. Bonn$$d2019
000865211 520__ $$aWater stable isotopes are powerful tracers for partitioning of the terrestrial ecosystem water vapor fluxes into process-based components, i.e. evapotranspiration (ET) into soil evaporation (E) and plant transpiration (T). The isotopic methodology for ET artitioning is based on the fact that E and T have distinct water stable isotopic compositions, which in turn are due to each flux being differently affected by isotopic kinetic effects. To use stable isotopologues of water in ET partitioning studies, a good knowledge of the isotopic (equilibrium and kinetic) fractionation effects is crucial. While the temperature-dependent equilibrium fractionation factor is well characterized (Majoube 1971), the kinetic fractionation factor (αK), relevant, e.g., during soil evaporation, needs further investigation. In order to address this knowledge gap, we conducted a series of three different long-term bare soil evaporation experiments (differing in soil-water availability and aerodynamic conditions) to obtain αK values from the collected isotopic data and the inversion of a well-known resistance-totransfer model (i.e., the Craig and Gordon (1965) model). The isotopic composition of the soil water (δs) vapor was monitored non-destructively by using gas-permeable tubing (Rothfuss et al. 2013).The Craig and Gordon (1965) model was used in two different approaches. The first approach uses the Keeling (1958) plot to obtain values for the isotopic composition of the evaporation (δE). The second approach uses the slope of the linear regression between δs 2H and δs 18O. Results showed that the largest source uncertainty in the computation of αK stemmed from the uncertainty associated with the δE values modeled with the Keeling (1958) plot method. In the second approach αK values werewithin the theoretical range proposed by Dongmann et al. (1974) and Mathieu and Bariac (1996), which pointed to the prevalence of the turbulent transport of water vapor under saturated and unsaturated soil conditions.
000865211 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000865211 536__ $$0G:(DE-HGF)TERENO-2008$$aTERENO - Terrestrial Environmental Observatories (TERENO-2008)$$cTERENO-2008$$fTERENO-2008$$x1
000865211 536__ $$0G:(DE-Juel1)BMBF-01LN1313A$$aIDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)$$cBMBF-01LN1313A$$fNachwuchsgruppen Globaler Wandel 4+1$$x2
000865211 8564_ $$uhttps://juser.fz-juelich.de/record/865211/files/Energie_Umwelt_469.pdf$$yOpenAccess
000865211 8564_ $$uhttps://juser.fz-juelich.de/record/865211/files/Energie_Umwelt_469.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865211 909CO $$ooai:juser.fz-juelich.de:865211$$pVDB$$pVDB:Earth_Environment$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
000865211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167345$$aForschungszentrum Jülich$$b0$$kFZJ
000865211 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000865211 9141_ $$y2019
000865211 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865211 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865211 920__ $$lyes
000865211 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000865211 980__ $$aphd
000865211 980__ $$aVDB
000865211 980__ $$abook
000865211 980__ $$aI:(DE-Juel1)IBG-3-20101118
000865211 980__ $$aUNRESTRICTED
000865211 9801_ $$aFullTexts