001     865211
005     20220930130219.0
020 _ _ |a 978-3-95806-417-1
024 7 _ |a 2128/23070
|2 Handle
024 7 _ |a urn:nbn:de:0001-2019100920
|2 URN
037 _ _ |a FZJ-2019-04745
041 _ _ |a English
100 1 _ |a Quade, Maria
|0 P:(DE-Juel1)167345
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Partitioning Water Vapor Fluxes by the Use of Their Water Stable Isotopologues: From the Lab to the Field
|f 2015-08-01 - 2019-06-25
260 _ _ |a Jülich
|c 2019
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
300 _ _ |a 113
336 7 _ |a Output Types/Dissertation
|2 DataCite
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a DISSERTATION
|2 ORCID
336 7 _ |a PHDTHESIS
|2 BibTeX
336 7 _ |a Thesis
|0 2
|2 EndNote
336 7 _ |a Dissertation / PhD Thesis
|b phd
|m phd
|0 PUB:(DE-HGF)11
|s 1593417076_16974
|2 PUB:(DE-HGF)
336 7 _ |a doctoralThesis
|2 DRIVER
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment
|v 469
502 _ _ |a Dissertation, Univ. Bonn, 2019
|c Univ. Bonn
|b Dissertation
|d 2019
520 _ _ |a Water stable isotopes are powerful tracers for partitioning of the terrestrial ecosystem water vapor fluxes into process-based components, i.e. evapotranspiration (ET) into soil evaporation (E) and plant transpiration (T). The isotopic methodology for ET artitioning is based on the fact that E and T have distinct water stable isotopic compositions, which in turn are due to each flux being differently affected by isotopic kinetic effects. To use stable isotopologues of water in ET partitioning studies, a good knowledge of the isotopic (equilibrium and kinetic) fractionation effects is crucial. While the temperature-dependent equilibrium fractionation factor is well characterized (Majoube 1971), the kinetic fractionation factor (αK), relevant, e.g., during soil evaporation, needs further investigation. In order to address this knowledge gap, we conducted a series of three different long-term bare soil evaporation experiments (differing in soil-water availability and aerodynamic conditions) to obtain αK values from the collected isotopic data and the inversion of a well-known resistance-totransfer model (i.e., the Craig and Gordon (1965) model). The isotopic composition of the soil water (δs) vapor was monitored non-destructively by using gas-permeable tubing (Rothfuss et al. 2013).The Craig and Gordon (1965) model was used in two different approaches. The first approach uses the Keeling (1958) plot to obtain values for the isotopic composition of the evaporation (δE). The second approach uses the slope of the linear regression between δs 2H and δs 18O. Results showed that the largest source uncertainty in the computation of αK stemmed from the uncertainty associated with the δE values modeled with the Keeling (1958) plot method. In the second approach αK values werewithin the theoretical range proposed by Dongmann et al. (1974) and Mathieu and Bariac (1996), which pointed to the prevalence of the turbulent transport of water vapor under saturated and unsaturated soil conditions.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a TERENO - Terrestrial Environmental Observatories (TERENO-2008)
|0 G:(DE-HGF)TERENO-2008
|c TERENO-2008
|f TERENO-2008
|x 1
536 _ _ |a IDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)
|0 G:(DE-Juel1)BMBF-01LN1313A
|c BMBF-01LN1313A
|f Nachwuchsgruppen Globaler Wandel 4+1
|x 2
856 4 _ |u https://juser.fz-juelich.de/record/865211/files/Energie_Umwelt_469.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865211/files/Energie_Umwelt_469.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:865211
|p openaire
|p open_access
|p urn
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167345
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21