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Abstract

Every human is unique and so is her diseases. This statement seems trivial but its con-
sequences are far-reaching, especially for researchers and medical doctors trying to investig-
ate and diagnose diseases. Some diseases progress in a stereotyped way, but many others
show a variable phenotype. Especially diseases that interact with the intrinsic compensatory
system are likely to feature manifold pathological changes. By observing individual, specific
disease variables, in isolation, healthy and degenerated systems may be indistinguishable. It
is mostly a combination of multiple variables that form the basis for disease understanding
and diagnosis.

The pathology of Alzheimer’s disease (AD) is associated with an inappropriate homeostatic
compensation. The resulting complexity of this disease may be the reason for the two
fundamental, unsolved challenges in AD. There is a lack of disease markers that can detect
the disease onset in the preclinical phase itself. Moreover, there is no treatment that can
effectively slow down the disease progression. The later might be a consequence of the poorly
understood disease causes, which is aggravated by homeostatic interference. In this thesis
the above stated difficulties in AD research are addressed in two different ways: The first
part deals with the systematic investigation of a potential disease diagnosis tool. It is based
on the structure of networks derived from functional magnetic resonance imaging (fMRI).
The second part investigates the implication of AD and a particular type of homeostatic on
the characteristics of small neuronal networks.

With respect to AD diagnosis, we construct brain graphs in which nodes represent brain
areas and edges represent the functional connectivities. We then evaluate the resulting graph
properties with respect to their diagnostic power, for three different health conditions: healthy,
mild cognitive impaired and AD. We systematically examine which combinations of methods
yield significant differences in the marginal distributions of the graph properties. The results
are then evaluated with respect to consistency across different methods and predictability
of diagnostic power. Crucial in these approaches is the definition of the diagnostic power,
which is either based on a classification or on a probability measure. The latter can be directly
combined with the results of other diagnostic tests, but requires the choice of an appropriate
statistical model. Starting from first principles and approximations, we explain step-by-step
how to construct such statistical models. In particular, we detail which models imply what
assumptions on the data. In addition, we show how these statistical models can be evaluated
and compared.

In the second part of this thesis, we use simulation to examine how the prominent synapse
loss in AD (a network feature that best correlates with cognitive decline) affects computational
performance of a simple recurrent network. We observe that deleting excitatory-excitatory
synapses reduces the network’s sensitivity to perturbations. It also increases generalization
and reduces discrimination capability. Surprisingly, firing rate homeostasis based on an
increase of the remaining excitatory-excitatory synapses, recovers performance for a wide
range of lost connections. This phenomenon is examined further in an analytical model,
substantiating the robustness of the results and providing more insight into underlying
mechanisms.
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Überblick

Jeder Mensch ist einzigartig, genau wie seine Krankheiten. Diese Aussage hört sich trivial
an, aber die resultierenden Konsequenzen sind weitreichend, vor allem für Forscher und
Ärzte, die Krankheiten untersuchen und diagnostizieren wollen. Einige Krankheiten haben
einen sehr stereotypischen Verlauf. Andere können dagegen einen sehr variablen Phänotyp
aufweisen. Vor allem Krankheiten, die mit körpereigenen Kompensationsmechanismen
interagieren, haben die Tendenz, verschiedene Symptome aufzuzeigen. Wenn nur eines
dieser Symptome betrachtet wird, kann das kranke System unter Umständen nicht von
einem gesunden unterschieden werden. Daher können diese Krankheiten nur verstanden
und diagnostiziert werden, wenn viele Merkmale gleichzeitig betrachtet werden.

Die Alzheimer-Krankheit (AK) geht mit einer beeinträchtigten homöostatischen Kompensa-
tion einher. Die daraus resultierende Komplexität im Krankheitsbild trägt wahrscheinlich
zu den zwei fundamentalen Herausforderungen in der AK-Forschung bei. Einerseits bedarf
es mehr zuverlässiger Krankheitsmarker, die den Ausbruch der Krankheit schon in der
vorklinischen Phase erkennen lassen. Andererseits gibt es noch keine Behandlung, die den
Krankheitsverlauf verlangsamt. Letzteres resultiert daraus, dass die Krankheitsursache noch
nicht genügend erforscht ist, was wiederum durch Kompensationsmechanismen erschwert
wird. In dieser Arbeit gehen wir auf diese Herausforderungen auf zweierlei Arten ein. Im er-
sten Teil untersuchen wir ein potenzielles Diagnoseverfahren, welches auf der Untersuchung
von Netzwerkstrukturen basiert, die aus funktionellen Magnetresonanztomografiedaten
(fMRI) abgeleitet werden. Im zweiten Teil untersuchen wir die Auswirkungen der AK und
einer bestimmten Art von Homöostase auf die Eigenschaften eines neuronalen Netzwerkes.

Im ersten Teil der Arbeit werden Graphen für die AK-Diagnose konstruiert, bei denen die
Knoten Hirnareale und die Kanten funktionelle Verbindungen darstellen. Wir evaluieren die
Grapheigenschaften bezüglich ihres Diagnosepotentials anhand von Patientendaten, und un-
tersuchen systematisch, welche Methodenkombinationen signifikante Unterschiede zwischen
den Marginalverteilungen der Grapheigenschaften hervorbringen. Die Ergebnisse werden
in Bezug auf Robustheit, Praktikabilität und Diagnosevermögen evaluiert. Die Definition
des Diagnosevermögens basiert entweder auf einem diskriminierenden oder generativen
Modellierungsansatz. Bei letzterem wird ein statistisches Modell aus den Daten erstellt, das
die Kombinierbarkeit mit anderen Diagnoseverfahren ermöglicht. Wir erläutern schrittweise,
wie ein solches statistisches Modell konstruiert werden kann, und erklären, welches Modell
welche Annahmen bezüglich der zugrunde liegenden Daten macht. Zusätzlich zeigen wir,
wie die statistischen Modelle evaluiert und verglichen werden können.

Im zweiten Teil untersuchen wir die Auswirkungen von Synapsenverlust (ein prominentes
Merkmal der AK) auf das rechnerische Leistungsvermögen eines einfachen neuronalen
Netzwerkes. Wir beobachten, dass das Entfernen exzitatorischer Synapsen die Sensitivität
des Netzwerkes reduziert. Gleichzeitig erhöht es die Generalisierungstendenz und verringert
die Diskriminierungsfähigkeit. Wir zeigen, dass eine bestimmte Form von Homöostase,
die die Feuerrate aufrechterhält, die Leistungsfähigkeit des Netzwerkes wiederherstellt.
Mithilfe eines vereinfachten mathematischen Modells untermauern wir die Robustheit dieses
Phänomens und gewinnen einen tieferen Einblick in die zugrunde liegenden Mechanismen.
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Chapter 1

Introduction

The brain has to maintain its functionality and stable activity despite ongoing perturbations of
different severity. These perturbations might be caused by external factors, e.g. displacement
of the individual into a new environment or more intrinsically e.g. changes in protein
expression patterns caused by different developmental stages. They might demand a change
in behavior and, as a consequence, a change in brain activity, such that the overarching goal
of an individual surviving and production of offspring is achieved. This challenges the brain
to operate in a stable regime and, at the same time, adjust to new conditions. Such flexibility
is achieved due to the rich repertoire of homeostatic regulatory mechanisms of the brain.

In this introduction, I will explain why this richness in homeostatic flexibility can cause
problems when it comes to understanding disease mechanisms and making a disease dia-
gnosis. Hereby, I will mainly focus on Alzheimer’s disease (AD), because the core of this
thesis deals with understanding and diagnosing AD in the face of a wide spectrum of homeo-
static regulations occurring at different scales. In order to facilitate the understanding of
the work presented in this thesis, short introductions into relevant topics are given in the
following subsections Secs.1.1 -1.4.3. In the final subsection of this introduction (Sec.1.5), the
relationship between homeostasis and disease challenges is explained. Subsequently, that
reasoning forms a starting point for an outlook on the main topics and problems tackled in
the remaining chapters of this work.

1.1 Alzheimer’s disease - a disease with many facets

AD is a neurodegenerative disease that after years of progressive cognitive loss, leads to death.
Unusually, there are two different manifestations of the disease: familiar and sporadic. Both
have in common similar cognitive symptoms such as disorientation and memory loss, and
morphologic abnormalities in brain structures like the abnormal accumulation of amyloid-β
(Aβ) plaques and tau tangles (see below). Familiar Alzheimer, the much rarer case, which
only manifests in a person’s thirties, forties, and fifties (for that reason also called early-onset-
Alzheimer), is caused in almost all cases by a dominant acting mutation in one of the three
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proteins: amyloid precursor protein (APP), presenilin-1 (PS1), or presenilin-2 (PS2). 1 In
contrast, symptoms in sporadic (late-onset) AD develop in elderly individuals (65 and older)
and the cause of this disease manifestation is still not known but widely debated. Since this
disease type has a much higher prevalence (in the USA in 2018: < 65 years, 4%; 65− 74 years,
16%; 75 − 84 years, 44% ; > 85 years, 37%) 2 and still no treatment has been found that is
capable of at least slowing down the disease progression, it causes high costs to the health
care systems (13,080e per patient per year in Germany; Reese et al., 2011) and thus research
in sporadic AD is well financed.

Initially, the cognitive decline in AD is predominately characterized by loss of short-term
memory. But, considering AD as a pure memory-deficit is an oversimplification. First, the
notion of memory is very general and it is important to differentiate between the diverse
subtypes such as episodic, semantic and working memory, which have different time courses
during etiopathology. Second, Alzheimer patients, as well as individuals who are more likely
to develop Alzheimer then cognitively unimpaired elderlies, show deficits in many other
cognitive domains such as perceptual speed or visual-spatial processing (Bennett et al., 2002;
Baldwin & Tomaszewski Farias, 2009).

This combination of different cognitive domains, which progressively become impaired,
causes more and more difficulties to the AD patient in order to manage everyday life inde-
pendently. Initially the patient might start repeating herself or displaces items more often.
With further disease progression, the person might be less able to follow a conversation
or appear confused due to non-logical jumps in her stream of thoughts. In moderate AD,
executing more complex activities such as driving, cooking and medication management
becomes difficult, if not even impossible. In the more advanced state, the patient needs
support for basic activities such as eating, dressing or mobility. At this state, the person
frequently loses the ability to recognize close friends and relatives. At the final state, other
symptoms emerge such as motor and sensory problems, seizures and psychosis, eventually
resulting in bed confinement.

The observed cognitive deterioration in AD is accompanied by structural and/or biochemical
changes in the brain, some of which are very well visible even without microscopy including
tissue atrophy, synapse and neuron loss, Aβ plaques and tau tangles. More difficult to
detect but not less important in understanding the disease is the deposition of Aβ oligomers,
synaptic plasticity impairment, increased microglial and astrocytic activation and altered
oxidative stress response (see Fig.1.1). Among these pathological features, synapse loss
correlates best with cognitive decline as post-mortem studies have substantiated (Terry et al.,
1991; de Wilde et al., 2016). Already in the initial stages of the disease, a synapse loss of up
to 15− 25% is observed in the lymbic system (comprising, amongst others, hippocampus,
entorhinal cortex, amygdala, anterior nuclei of thalamus) and in the frontal cortex. In
advanced AD this synapse loss increases up to 20 − 40% and recruits gradually larger
cortical brain areas (de Wilde et al., 2016). The loss of synapses and neurons is reflected
in the observed shrinkage of brain tissue. Although the most reliable results are given by
post-mortem autopsy, structural MRI can also give insight in how much brain tissue is lost.

1https://www.alzforum.org/early-onset-familial-ad/overview/what-early-onset-familial-alzheimer-
disease-efad

2https://www.alz.org/documents_custom/2018-facts-and-figures.pdf
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Depending on the particular brain region and on the disease severity, tissue atrophy up to
20% is common and may even reach 40% in the hippocampus of clinical AD patients. In a
stereotyped view, brain atrophy first affects the medial temporal lobe (mainly entorhinal
cortex and hippocampus) and then spreads along the temporal-parietal-frontal axis to the
remaining cortical regions, whereas motor areas are generally spared. However, AD does not
always proceed in a stereotyped fashion and two other atypical manifestations are known,
out of which one is mainly characterized by neocortical atrophy and only small hippocampal
tissue loss and the other mainly manifests in the limbic-system. (For review on brain atrophy
measured via structural MRI see Pini et al. 2016.)

In terms of functional activity, e.g. as measured via functional MRI (fMRI, see Sec.1.4.1),
observations across different studies do show both: increased and decreased BOLD signal for
a couple of regions e.g. hippocampus and other regions within the default mode network
(Vemuri et al., 2012; Damoiseaux, 2012). In contrast, studies based on FDG-PET, in which the
glucose consumption in the brain is visualized, mainly report a decrease in glucose uptake
(Marcus et al., 2014), which is interpreted as neuronal hypoactivity. However, two studies
focusing on AD pre-stages also demonstrate a preceding hyperactivity (Poisnel et al., 2012;
Herholz, 2010). The common consensus of these functional activation studies, which are
based on different modalities, describes an initial hyperactivity of relevant brain regions
followed by a long lasting hypoactivity that goes hand in hand with massive neuronal
degeneration. It is still under debate whether the observed neuronal destruction results either
from primary neurodestructive factors emerging as an initial AD trigger or are instead part
of a compensatory reaction that may overreach a physiological state or may even prevent the
neurons from even worse consequences.

Toxic Aβ plaques and oligomers, apart from the cognitive symptoms, form the main link
between familiar and sporadic AD. The amyloid precursor protein (APP) can be processed
by two different pathways. In the non-amylogenic pathway the amyloid precursor protein
(APP) is cleaved by an α−secretase and subsequently by a γ- secretase leading to non-toxic
cleavage products. In the amylogenic pathway, APP is cleaved by a β−secretase followed by
a γ- secretase leading to toxic Aβ aminoacids (see Fig.1.1). Depending on the exact length
of the Aβ molecules (40 or 42 aminoacids) these molecules are more or less hydrophobic
and either conglomerate only slightly, forming soluble oligomers, or aggregate immensely,
creating plaques. All mutations in familiar AD, which either affect the APP directly or the
subunits of the γ-secretase (Presenilin 1 and 2) are said to increase the levels of Aβ molecules
in the traditional view. This is in line with observations made in sporadic AD, in which
also increased Aβ levels are found. However, more recent studies show that most of the
mutations in the presenilin 1 gene which accounts for 95% of the familiar AD cases, rather
lead to a loss-of-function of γ- secretase causing lower levels of Aβ (Kelleher & Shen, 2015;
Hunter & Brayne, 2017). This is only one example that highlights why Aβ as an AD trigger is
controversial and why other pathways related to γ- secretase activity (which does also cleave
other membrane molecules) and APP functioning may also be important actors in disease
progression.

Another key player in AD is the aggregated form of phosphorylated tau referred to as tau
tangles. In the monomer configuration, its main physiological function lies in regulating
microtubule dynamics, axonal transport and neurite outgrowth (Johnson & Stoothoff, 2004).
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Figure 1.1: Alzheimer pathology affects all scales in the brain. This figure summarizes some
prominent examples of pathogenic changes occurring in AD on different spacial scales by comparing
healthy (left) and AD specific features (right): large areas in the brain suffer atrophy (upper panel);
cell network abnormalities affect, on the one hand, neurons (tau tangles and neurodegeneration)
and, on the other hand, glia cell mediated inflammation (second panel); on the neuronal level
synapse loss is most prominent (third panel); on molecular level the cleavage of APP is shifted
towards the amyloidogenic pathway in AD (last panel). Illustrations (second to fourth panel) with
permission from Abuhassan et al. (2012) and Canter et al. (2016). The medical illustration (upper
panel) is provided courtesy of Alzheimer’s Disease Research, a BrightFocus Foundation program
(http://www.brightfocus.org/alzheimers).

The neurotoxic effect of its agglomeration is likely to be based on both: the lack of normal
functioning tau and its toxic effect as tangle (Ballatore et al., 2007). Although it is largely
accepted that tau -pathology is a consequence of Aβ dysregulation, some studies report Aβ
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independent pathways that trigger neurodegeneration in AD (Shen & Kelleher, 2007).

Despite the fact that a huge amount of money has been spent into AD research in the last
years (the U.S. National Institute of Health will spend $1.414 billion to Alzheimer’s disease
and dementia research in 2019 3), and the knowledge about the disease is accumulating fast,
the main fundamental problems still remain unsolved. So far, there exists no treatment which
is able to at least slow down the disease progression. The most often prescribed acetylcholine
esterase inhibitors and Memantine (an NMDA blocker) almost show no effect (Knight et al.,
2018). The need to excuse this research failure, combined with the growing awareness of
the manifold pathological changes in AD, which do not allow for reversal to a physiological
state, have led to the second main challenge in the research focus: Identifying individuals
that will develop AD as early as possible (predictive diagnosis).

Until today, the conclusive AD diagnosis is only made post-mortem. Since it is not possible
to reliably diagnose AD in advanced disease stages in living individuals, it is even more
challenging to find biomarkers that allow for a high sensitivity and selectivity with respect to
an early AD diagnosis. In this regard, ’early’ implies a diagnosis even at a time point when
cognitive deficits are not even visible. The underlying reasoning is the following: The first
morphological changes in AD are likely to be compensated by either homeostatic network
mechanisms (compare Sec.1.3) and/or by the recruitment of cognitive resources that are
usually, even if present, not used in the individual’s daily life. The latter hypothesis originates
from the observation that the process of cognitive decline is more slowly in individuals who
experienced a higher level of education (Stern, 2012). The problem of an ’early’ diagnosis is
even intensified by the observation that some individuals with some cognitive complaints but
who are still able to manage their daily life on their own (generally called mild cognitively
impaired, MCI), do not develop AD. As a consequence, the early stages of AD are named and
classified in various ways, e.g. ’probable ’ (individuals with amnesic and nonamnesic disease
indicators such as frontal dysfunction and language impairments), ’possible’ (includes also
atypical features), ’prodromal’ (predementia stage with AD-type clinical amnesic phenotype
and positive AD biomarkers) or ’preclinical’ (no cognitive impairment but abnormal bio-
markers relevant in AD ) (Chertkow et al., 2013). But how to identify individuals that will
develop AD? And how can AD be distinguished from other types of dementia such as Lewy
body dementia or frontotemporal dementia?

These questions can be addressed by intensifying research on AD biomarkers. In particular
the following disease features, that are directly or indirectly accessible in the living indi-
viduals, are predominantly explored: Aβ abnormalities measured in the CSF via lumbar
puncture or through Aβ-PET, elevated levels of (phosphorylated) tau in the CSF, brain struc-
ture atrophy (mainly hippocampus) measured via volumetric MRI, cognitive tests such as
Mini-Mental State Examination (MMSE) (for review on possible tests see Baldwin & To-
maszewski Farias, 2009), and synaptic dysfunction reflected in a decreased FDG-PET signal
and in an altered functional activity measured via fMRI (Sperling et al., 2011). Only the
first four are already used for AD diagnosis. Their sensitivity and specificity values rank
from 80% to 95% (Humpel, 2011; Wattamwar & Mathuranath, 2010; Desikan et al., 2009)
with biomarker- specific differences, e.g. Aβ has a high sensitivity (all AD patients have

3https://www.aging.senate.gov/press-releases/nih-states-597-million-in-additional-fy-2019-funding-
needed-for-alzheimers-research
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.

Figure 1.2: Biomarker dynamics in AD. Hypothetical change of AD biomarkers in the course of AD.
Synaptic dysfunction might even be detectable before Aβ-abnormalities occur (dotted orange line).
Abscissa: different stages of AD progression. Ordinate: biomarkers abnormalities. Figure reproduced
with permission from Sperling et al. (2011)

increased Aβ in the brain) but low specificity (healthy elderly individuals have also Aβ
plaques). Additionally, their dynamics in the course of the disease vary a lot, as shown in
Fig.1.2. Most biomarkers change their profile only over a limited time window during the
disease period (Aβ concentrations change only in the beginning and reach their maximal
abnormality already in the MCI state, cognitive tests can only detect MCI and latter stages).
Only synaptic alterations appear to start already early on and reach their maximum only at
very late stages. Unfortunately, FDG-PET and fMRI measures which are able to detect large
scale synaptic alterations, are not currently used as diagnostic tools. This is probably due to
the lack of standardized protocols allowing an accurate diagnosis. In particular, there is no
common consensus on which particular information yields highest sensitivity and selectivity
values across the entire disease spectrum and should therefore be used for diagnosis.

1.2 The concept of homeostasis in biology exemplified by neur-
onal network dynamics

In living systems all processes need to be highly regulated in order to keep the system in
equilibrium, especially in the face of external perturbations and changes in the environment.
This process is termed homeostasis and takes place on all scales, including microbiological
structures, organelles, cells, groups of cells, tissues, organs and the entire body.
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How this is achieved conceptually, can be explained by control theory, claiming the interaction
of at least three necessary elements: a set point, a sensor and a negative feedback loop. A set
point indicates the target values of the considered physiological process, which is referred
to as regulated variable. It is not something that is defined through an intentional decision
by the system itself, but rather something that arises as a product of evolutionary pressure
and the system’s intrinsic capability to account for it. Deviations from this set point are then
detected by a sensor. This implies a direction specific change in the sensor’s configuration,
depending on whether the considered property overshoots or undershoots the set point.
The change in the sensor’s configuration triggers, via a controller, a negative feedback loop
mediated through controlled variables, which counteract the deviation from the set point,
bringing the system back to its equilibrium. All three elements (set point, sensor, negative
feedback loop) can act simultaneously but eventually on different time scales (Cabanac, 2006;
Kotas & Medzhitov, 2015).

The physiological range of the regulated variable can be either small, such that the system only
allows for a single set point (e.g. arterial pressure of oxygen or blood calcium concentration
in humans) or rather broad, such that multiple set points are possible (e.g. body weight,
blood glucose, total body water) (see Fig.1.3, for details on terminology and more information
see Kotas & Medzhitov 2015). If multiple set points are possible and the system stays for a
long time in a regime that is far away from ’normal’, e.g the person is highly overweighted,
adverse long-term effects are the consequence. If a regulated variable is allowed to take on
only a very small range of values and a disturbance is such, that the controlled variables
cannot maintain the regulated variable at a stable level, parts of the system, if not the entire
one, are likely to collapse. Sometimes, the need for compensation of a particular homeostatic
systems interferes with the requirements of another one. In these cases, the overarching
regulation system has to give preference to one of the systems, such that the consequences
are least harmful. In such a case the overarching regulation system often gives preference to
the regulated variables that operate only in a narrow range.

A regulated variable might be controlled by only a few or several controlled variables. These
controlled variables, that refer to quantities, can also take small or large ranges of values,
resulting in either small or broad distributions of their observed occurrence. In addition,
only the combination of specific values of the controlled variables ensures the stability of a
set point of the regulated variable. Thus, many combinations of controlled variables do not
occur (see Fig.1.3).

An example of a regulated variable in a neuronal network is the firing rate of a neuron. In
order to ensure that a network neither runs into permanent quiescence nor hyperactivity,
the firing rates of the neurons have to stay in a certain range. In general, the firing rate of
a neuron, among others, strongly depends on the neuron’s excitability. In Van Welie et al.
(2004) it is shown that this excitability can be regulated by at least three controlled variables:
the amount of active AMPA receptors 4, NMDA receptors 5 and Ih

6 channels. Upregulating
AMPA and NMDA receptors leads to an increase in excitation and hence to a higher firing

4α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, ionotropic glutamate transmembrane re-
ceptor

5N-methyl-D-aspartate receptor, ionotropic glutamate transmembrane receptors
6hyperpolarization-activated cation current
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rate. This can be counteracted by upregulating Ih channels, which, in turn, lowers the firing
rate again.

Another example of a regulated variable concerning neuronal activity is the spike bursting
of cultured Purkinje cells 7 in mice (Swensen & Bean, 2005). Here, although some of the
recorded neurons show almost identical spike bursting patterns in whole cells recordings,
these patterns are generated based on different densities of Sodium and Calcium channels
(the controlled variables) causing different current flows at different time points. (More
examples are reviewed in Marder & Goaillard 2006).

These two examples show that certain processes of a neuron or neuronal network are under
homeostatic control. Nevertheless this does not automatically imply that maintaining a
target value of a certain regulated variable also retains the target values of another. This has
been for example demonstrated in CA1 pyramidal neurons. Here, even if the firing rate of
inter-neurons is fixed, differences in cellular or synaptic parameters alter network synchrony,
which has been also found to underlie homeostatic regulation. (Santhakumar & Soltesz,
2004).

Coming back to the rather general concept of homeostasis, the phenomenon homeostasis
can be also explained in a very different way. Thus, it can be considered as a product
of dynamic self-organization. Accordingly, the dynamics of the considered n properties
underlying homeostasis are located in an n-dimensional attractor and small perturbations
simply lead to a small displacement from the attractor. But, due to the attractor’s force of
attraction the dynamics will relax back to the center of the attractor after a certain relaxation
time. The advantage of this approach is, that attractors can also have other dynamics then
just fixed points (monotonic state of the observed properties) and hence can also describe
periodic processes, such as oscillations. This extension of the understanding of homeostasis is
incorporated in the concept of homeodynamics and is used for example in order to describe
protein interactions (Lloyd et al., 2001).

1.3 Homeostasis in neuronal networks suffering Alzheimer’s dis-
ease

The particular feature of neuronal cells is their ability to communicate via electrical signals,
primarily via spikes. Therefore, not only processes that are typical for non-specialized cells,
such as genome stability, proteostasis, energy supply, immune response and calcium signaling
have to be regulated, but also network-wide spiking activity. In this section, I give a short
overview about the mentioned homeostasis types and examples of their potential role in AD,
mainly focusing on firing rate homeostasis as it is a main feature of neuronal activity (others
are for example: firing synchrony or spiking regularity).

As explained in Sec.1.1, the hippocampus plays a major role in AD and various observations
suggest that an impairment of its firing rate regulation plays a major role in AD progression.

7GABAergic neurons in the cerebellum.
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Figure 1.3: Terminology of a homeostatic regulation system. A regulated variable Y manipulated
by only two controlled variables A and B (with values a and b), which for sake of simplicity interact
linearly: y = a+ b. Left: If y is allowed to take on only a single value, only specific combinations of a
and b are allowed (straight line). Although in this particular example the marginal distributions of A
and B have to be the same, in general, the marginal distribution of one regulated variable does not
entail information about another. Right: If the range of Y is broader (y ∈ [y′, y′′]), fixing a particular
value of a still allows b to take on a range of values and vice versa (hatched area). In this case, the
marginal distributions of the two variables differ.

Evidence that firing rates are altered in the hippocampus of AD patients have been found in
both human and mouse models. Although, at first glance studies have shown contradicting
results and reported an increase as well as a decrease in the firing rates of hippocampal
neurons, more and more evidence arose that both observations occur in AD, but hyperactivity
seems to come first, followed by hypoactivity.

An extreme case of hyperactivity is an epileptic seizure, in which many neurons fire syn-
chronously. Some standard EEG and MEG measurements have revealed a higher rate of
epileptic-like discharges in AD patients compared with age-matched healthy controls (Men-
dez et al., 1994; Amatniek et al., 2006). Furthermore, recent intracranial recordings of two AD
patients in the early disease phase have revealed silent hippocampal seizures during sleep,
that were not measurable with normal EEG (Lam et al., 2017). Evidence for higher firing
rates and increased neuronal excitability also comes from in vitro patch clamp recordings of
hippocampal slices and in vivo investigations of different AD mouse types with Aβ pathology
(Hall et al., 2015; Šiškova et al., 2014). These observations suggest that hyperactivity is a true
hallmark of early disease stages. Decreased firing rates have been mainly reported for mouse
models that mainly feature tau tangles and not Aβ pathology (Menkes-Caspi et al., 2015; Fu
et al., 2017).

As mentioned above, these results are not mutually exclusive, since increased and decreased
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firing rates might occur at different time periods and involve different neuron types, in
which Aβ and tau derivatives might even be expressed and/or modified in different ways.
More insight should be obtained by long-term recordings. A first step towards long-term
recordings is done based on bulk Ca2+-imaging in CA1 hippocampal familial AD mice,
which express both Aβ- and tau- pathology. Here, very young mice (1- to 2-month old) only
show hyperactive cells. With aging (6- to 7-month old) both hyperactive and hypoactive
neurons have been found (Busche et al., 2012). This is in line with observations from PET and
fMRI studies(see Sec.1.4.1), in which an increase followed by a decrease in glucose utilization
and in the BOLD signal respectively has been shown (Dickerson et al., 2005; O’Brien et al.,
2010; Herholz, 2010).

Firing rate alterations in neuronal networks can have several reasons, e.g. a change of the
intrinsic properties of neurons, alterations in synaptic connectivity, modifications of the
input to the network and/or if more than one stable attractor exist, the shift of the network
dynamics to another attractor. All these scenarios highly influence each other, e.g. a shift
of the neurons’ properties will also affect the synaptic connectivity of the network in the
long run. Most studies investigating underlying causes of AD focus on the first two points
and their interactions. Here, special attention is given towards the damage of synapses,
hence it highly correlates with the cognitive deficits observed in AD (see Sec.1.1). In the
following paragraphs, I will give an example of what is dysregulated in AD for each of the
aforementioned domains underlying homeostatic control (genome stability, proteostasis etc.)
and the resulting effect on synapse functioning, which might result in firing rate alterations.
(For an extensive overview see e.g. Frere & Slutsky 2017.)

Genome stability mainly refers to methylation and acetylation of the DNA strand, which, by
regulating its accessibility for the transcription machinery, also controls gene expression. In
AD patients, the occurrence of histone deacetylases is increased, reducing the acetylation level
of histones and therefore hampering the expression of important transcription factors that
regulate synaptic plasticity and learning (e.g. the activity-regulated cytoskeleton-associated
protein Arc) (Gräff et al., 2012).

Proteostasis describes all mechanisms that influence the activity of a protein including protein
synthesis, folding, transport and degradation. The most prominent misregulated proteins in
AD are Aβ and tau. In both cases, a bidirectional relationship with respect to synaptic activity
and protein expression is known. In a simplified view, a high concentration of Aβ oligomers
inhibits synapse growing and impairs synaptic plasticity. The resulting reduced synaptic
activity reduces Aβ secretion (Kamenetz et al., 2003). Low concentrations of Aβ might even
enhance long term potentiation. The protein tau is normally located in axons. Increased
synaptic activity (and probably the presence of Aβ) leads to a relocation to the post-synaptic
terminals of the somatodentritic compartments and, as a consequence, to a loss of excitatory
synapses (spines) and therefore a reduction in firing rate. As reviewed in Tampellini (2015),
these processes are much more complex than it is described here and highly depend on the
location and the exact structure of considered proteins.

Ionic Ca2+ is one of the most important signaling molecules in neurons and its effects highly
depend on its local concentration. It is well known for its role in regulating neurotransmitter
release, signaling through voltage-gated calcium channels and ionotropic receptors, such as
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NMDR. As mentioned above, its intracellular concentration is strictly regulated, otherwise
its signaling function would be disturbed. This regulation also implies its removal from the
intracellular matrix, which can be either done by the endoplasmic reticulum (ER), mitochon-
dria or transport to extracellular space. In AD brains and familiar AD mice, an augmented
Ca2+ uptake from the ER to the mitochondria has been reported (Hedskog et al., 2013), which
may induce mitochondrial dysfunction and stress responses, potentially leading to cell death
(Rizzuto et al., 2012).

There is some evidence that disruption of energy homeostasis plays a crucial role in AD
etiology. For example, patients with type 2 diabetes (Huang et al., 2014) and elevated glucose
blood levels (even in the absence of diabetes; Crane et al., 2013), show an increased risk
for developing AD-related dementia. Also a high-fat, low carbohydrate ketogenic diet,
that shifts the brain metabolism towards ketone bodies as a major energy source and not
glucose, has been found to improve cognitive performance (Reger et al., 2004). With respect
to possible underlying molecular mechanisms (Frere & Slutsky, 2017), it is not clear how
glucose metabolism triggers AD. More insight would be very important, since these are
mechanisms that individuals, at least to a certain extent, can influence by adapting their
lifestyle.

The activation of the immune system has been found to be both beneficial and damaging (for
review see Frere & Slutsky, 2017). Microglia may directly modulate synapses and initiate
synaptic pruning (Hong et al., 2016). The ablation of microglia, although not substantially
affecting the formation of plaques, is thought to ameliorate the cognitive decline of familiar
AD mice (Dagher et al., 2015; Grathwohl et al., 2009).

The above examples form only a small subset of already detected disrupted homeostatic
mechanisms in AD. Since AD is accompanied by large morphological changes such as
synapse and neuron loss, it is very difficult to decide whether the observed changes are a
result of homeostatic dysregulation or whether they are part of a homeostatic response. For
example, if the network is hyperactive, it is crucial for the overall survival of the network
to delete synapses or even to kill some neurons. This might trigger an increased uptake of
Ca2+ in the mitochondria, which would lead to neuronal decay. Now, only considering Ca2+

homeostasis would convey the (wrong) picture, that Ca2+ homeostasis is disturbed in AD.
Thus, it is important to disentangle the dependencies, by searching for initial events, testing
whether a recovery of a specific homeostasis (via drugs) can counteract the cognitive decline
or by identifying risk factors.

1.4 Methodological considerations

The investigation of AD and associated homeostatic systems, which is performed in this
work, is based on methods that might not be familiar to the reader. In order to facilitate the
understanding of the following chapters, I give a short introduction to the main methodical
concepts, which are: functional magnetic resonance imaging (fMRI, Sec.1.4.1), graph theory
(Sec.1.4.2), neuronal network simulations and how the performance of neuronal networks
with respect to certain tasks can be quantified (Sec.1.4.3).
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1.4.1 What does fMRI measure?

In general, magnetic resonance imaging (MRI) is able to identify different types of body
tissue based on different relaxation times of protons after magnetization. A strong static
magnetic field causes a longitudinal magnetization of the protons aligned to the static
field. An additional high frequency alternating field causes a tilted rotation of the protons,
transversal to the magnetic field, and induces an electric voltage in a receiving coil. After
turning off the alternating magnetic field, the protons relax back to their original orientation.
Depending on the nature of the respective atoms, the relaxation times differ. Thus, based
on the relaxation time, different tissue types can be determined. Whereas in structural
MRI, protons of hydrogen nuclei in water molecules are excited, functional MRI uses the
paramagnetic properties of deoxygenated hemoglobin, which is magnetizable, in contrast to
diamagnetic oxygenated hemoglobin.

In the 1890s, researchers discovered that the oxygenation level of hemoglobin, is related to
neuronal activity. If neuronal activity is increased, the so called blood-oxygen-level dependent
(BOLD) signal, increases around two seconds later, reaching its peak over four to six seconds
before returning back to baseline level. The raising behavior of the BOLD signal is not
trivial, because different processes with positive and negative signs sum up: the oxygen
extraction fraction, which is the fraction of oxygen by an element of blood that moves from
the blood vessels into the brain tissue through the capillary bed, rises due to elevated energy
consumption and, as a consequence, the BOLD signal would decrease. But, at the same time,
the cerebral blood flow increases, providing the brain with more oxygenated blood, and
hence leads to a net increase of the BOLD signal. In addition, other effects such as changes in
the cerebral blood volume, which, depending on the type of blood vessel (arterial or venous)
can lower or magnify the BOLD signal (for review see Buxton, 2013).

Due to the multicomponent nature of the BOLD signal, changes in the fMRI signal, especially
those obtained from comparing two different groups e.g. healthy or diseased, have to be
interpreted with care. They could be caused by altered neuronal activity (which is the most
common interpretation), but also by chronic alterations in the baseline oxygenation level of
the blood or changes in the structure and functioning of blood vessels. In order to get more
insight into what causes differences in the BOLD signal, calibrated fMRI can be applied. Here,
the experimental protocol allows for a differentiation of the various underlying processes
and thus a clarification of what exactly causes the observed disparities.

1.4.2 Introduction into graph theory

A graph is a mathematical structure that consists of nodes and edges, in which the edges
indicate relations between the nodes. These relations can either be quantified yielding
weighted graphs or be given as yes-or-no statements (’yes’: an interaction between the two
considered nodes is given, and ’no’: it is not given) resulting in binary graphs. Furthermore,
a direction of the interaction can be indicated, allowing for the differentiation between the
influence that node ’A’ has on node ’B’ and vice versa (directed graph). But this information
is not always accessible or it is not used because it complicates graph analysis and therefore
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Figure 1.4: Illustration of graph properties. Based on a binary, undirected graph weighted degree,
shortest path, clustering coefficient and modularity are illustrated. The weighted degree (upper left)
measures the relative connection strength of a node with respect to all other nodes in the network.
The pink node has a higher degree (

number of existing edges
number of possible edges = 4

8 ) then the green node ( 18 ). The clustering
coefficient (lower left) reveals how dense direct node neighbors are connected among each other. The
pink node has a clustering coefficient of 3

4 because all four neighbors could form four connections,
but only three exists. The green node has a clustering coefficient of 0

1 The minimum shortest path
(upper right) in a binary graph is one (pink connection between the two pink nodes), which accounts
for a direct connection. The two green nodes share a very long shortest path of four, because at least
four edges have to be crossed to reach the other node. The depicted graph can be divided into two
modules (lower right, grey circles), with dense connectivity in each module but only a single edge
connecting the two.

edges are defined reciprocally bringing about undirected graphs.

In general, graph theory analyzes the structure of graphs, which is mainly characterized
by the exact arrangement and nature of graph edges. Depending on the specific scientific
question, different graph properties might be investigated.

The importance of nodes in a network can differ depending on their position and connection
strengths to other nodes. Thus, removal of a central lying nodes (which make many strong
connections to other graph nodes) might cause a total disruption of the graph structure
and a breakdown of the entire system, whereas deleting peripheral nodes might cause only
marginal damage to the associated network.

In order to investigate the centrality of a node, different measures can be applied. The
degree of a node sums up the strengths of its connections to the other graph nodes. The
weighted degree results from normalizing the degree (see Fig.1.4) and yields values between
zero and one, such that values closer to one indicate densely connected nodes. In protein-
protein-interaction networks, in which the graph’s edges describe the cooperation of different
proteins, nodes with high degree have been found to be essential for cell survival (Jeong et al.,
2001).
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The centrality of a node can also be evaluated with respect to the strengths of its emanating
paths to the other nodes in the graph. The so-called shortest path, which is the minimum
of all possible sums taking over all edges of all possible paths connecting two nodes (see
Fig.1.4), measures the potential ability of efficient information transmissions. Therefore, the
normalized sum of all shortest paths emanating from a singe node, the so-called closeness
centrality, indicates how central this node is with respect to information transmission. Striking
short shortest paths are a general feature of metabolic networks describing biochemical
reactions within a cell. Even with rising complexity of cellular processing going hand in hand
with an augmented number of different substrates, the shorteness of these paths does not
increase. This is due to a concomitant increase of the average number of reactions in which
certain substrates participate (Jeong et al., 2000). In genome-based large scale metabolic
networks, nodes of high closeness centrality indicate top central metabolites (Ma & Zeng,
2003).

The extent to which a node is connected locally is quantified by the clustering coefficient
(see Fig.1.4). The local embedding not only includes how strong a node is connected to
neighboring nodes but also how dense the neighboring nodes are connected among each
other. Therefore, the clustering coefficient can be used, for example, to identify small and
highly connected topologic modules in metabolic networks, forming functional entities
fundamental for cellular organization (Ravasz et al., 2002).

Extending the analysis of graphs further towards graph meta-structures opens up new
possibilities with respect to finding explanations for emergent phenomena that requires the
analysis of the interaction between multiple nodes in an overarching fashion. The analysis of
the meta-structure of a graph might reveal a partition of the graph into different modules in
which nodes belonging to a module are highly connected but connections between modules
are rare (see Fig.1.4). As a consequence, deleting intra-modular connections might have fatal
consequences for the system, as opposed to erasing inter-modular edges. Thus, changes in
the modular structure can lead to profound changes in the system’s output. For example,
a reduced modularity in functional brain graphs (see below) has been associated with the
awareness of a visual target (Godwin et al., 2015).

With respect to neuroscience, graph theory is applied to brain networks derived from various
spacial scales. Thus, graph nodes may correspond to brain-specific molecular structures and
proteins (see e.g. Godwin et al., 2015), single neurons, small neuronal populations or entire
brain areas (Godwin et al., 2015; Stam & Reijneveld, 2007). Graph edges are based either on
structural connectivity, defined as the strength of the axon-dendrite connections of neurons
or neuronal populations or on functional connectivity, in which the interplay between the
time varying signals of the nodes determines graph edges.

In this work, the focus is on functional connectivity between brain areas derived from fMRI
(Sec.1.4.1). In order to obtain the nodes of the graphs, brain voxels (3D volumetric pixels of
2-3 mm3) are clustered. Subsequently, the average BOLD signal of the resulting brain regions
is used to define the edges of the graph. The resulting graphs undergo further graph analysis
including the methods discussed above. In the end, the results are used to investigate in
how far the resulting graph property distributions allow for group differentiation between
healthy, MCI and AD individuals (see Sec.1.1).
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However, attempting to interpret differences in the properties of fMRI-graphs between
groups in a biologically meaningful way is in general difficult. On the one hand, it is difficult
to discriminate between neuronal-activity based effects and vascular alterations (see Sec.1.4.1)
and on the other hand, graph properties, which are based on summing up inverse correlations
(as it is for example the case for shortest path metrics), have no distinct biological correlate.
In addition, different ways of graph construction can lead to contradicting results, as I show
in Ch.3.

1.4.3 Network simulation and performance measures

In order to achieve a deeper understanding of how the brain works, it would be desirable to
manipulate some components in the system (e.g. the connectivity of the neurons or brain
areas ) and see how its functionality will change. Due to ethical considerations and technical
and/or monetary limitations, experiments based on animals or humans are often not suited
to address such questions. A loophole is offered by emulating the most crucial components
of the system using numerical simulations, which can then be modified in the desired way.
Although such simulations allow for a systematic investigation of single components, the
degree of detail the simulation offers also sets a limit to the interpretability and generalization
of the results. Thus, the most fundamental question, which often can not be answered entirely
is: What are the most crucial features of the system with respect to the considered scientific
question? And are all necessary features included in the simulation setting in order to explain
it?

Now, why not including as many features as possible in a simulation (which is not possible)?
A profound reason against a detailed model is given, if the model should not only serve as an
emulation tool but should also be amenable to analysis. Analytical approaches, for example,
often permit predicting of the long-term behavior of the system without time-consuming
simulations. In addition, after framing some system assumptions, e.g. stationarity, it is often
possible to predict global statistics of the system e.g. mean or standard deviation of the firing
rate of a neuronal population. Moreover, simplified model foster intuitive understanding.

Throughout this thesis, I simulate the behavior of single neurons gathered in a small network,
manipulate a parameter in this model and measure the model’s performance with respect
to sensitivity towards a small perturbation. Finally, I provide an analytical model that
substantiates the observations made and provides further insight into potential underlying
mechanisms.

The reader of this thesis might wonder, how exactly neuronal behavior can be emulated
and how the performance of certain tasks can be measured. The next paragraphs gives
an overview on how the interaction between neurons can be simulated (partly explaining
underlying mathematical equations) and what kind of models are suited for which tasks, as
well as a rough sketch on how some performance measures are implemented.

The mathematical description of a neuronal network, without considering its external input
or its readout (a group of neurons that is connected to the considered network), has three
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primary features that have to be characterized: the connectivity of the neurons among each
other, the synaptic transmission and how the input to a neuron is transferred to the output
of the neuron (transfer function). For simplicity, I focus on describing neurons as a point in
space (point-neuron model), neglecting the influence of morphology on its dynamics, e.g. the
placing of the synapses on the dendritic tree.

The connectivity of the network describes the strengths (or other properties) of existing syn-
apses. It can be summarized in a connectivity matrix, in which for each possible combination
of a pre-post-neuron coupling a value is given. If a presynaptic neuron does not connect to
a postsynatptic neuron, the entry is zero, otherwise it takes the value of the corresponding
synaptic weight. Such connectivity matrices also specify a graph structure, with neurons
representing the nodes of the graphs (see Sec.1.4.2). Different network connectivity structures
and classes have been related to different network performances and properties. e.g. Hopfield
networks (Little, 1974; Hopfield, 1982) feature associative memory and feed forward neural
networks are suited for supervised learning. A short, but comprehensive overview about the
different network types and their characteristics is given by Fjodor van Veen 8 .

The intrinsic dynamics of a neuron, that transfer a given input x(t) at time t to an output y(t)
can either describe an instantaneous response to an input (artificial networks), given as

y(t) = F [x(t)] (1.1)

or characterize the response to the input taking into account the entire history of inputs
starting from time t0. Such neuron dynamics that entail ’memory’ (biological networks) can
be formulated in the most generic way by:

y(t) = F [x(t)|∀t′ ≤ t], y(t0 = 0) = y0 (1.2)

with y0 being the neuron state at time t0 and t′ the time before t.

Classifying neurons based on their transfer function can yield three main groups: binary
neurons (with outputs of ones or zeros/minus ones); firing rate neurons (where y(t) can be
seen as either the pooled firing rate of the network or the average firing rate of a single neuron
across different trials); or spiking neurons. Binary neurons usually have instantaneous input
responses and no ’memory’. Rate and spiking neuron models can be defined in both ways:
’memoryless’ or with ’memory’ (depending on the exact realization of the transfer function).

Depending on the exact type of network and neuron, different tasks, such as classification,
pattern completion, prediction, sequence learning, memory formation etc. can be solved
more or less successfully. So far, rate neuron models have been found to be particularly
powerful for a whole range of task, e.g. classification and learning (of specific tasks), pattern
recognition, data generation, denoising and compression, dimension reduction, approxima-
tions, prediction (Bishop, 2006; Schmidhuber, 2015; van den Oord et al., 2016; Hinton et al.,
2006; Hornik, 1991; Connor et al., 1994). But why does the brain communicate via spikes?

8http://www.asimovinstitute.org/neural-network-zoo
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Is it just because of energy and space saving even if the coding is less effective? Or is the
underlying coding just poorly understood? New approaches extending the training results
of rate neuron models to an analogues spiking network also achieve high computational
power in tasks like delayed reaction, self-sustained pattern generation, long-term memory
etc. (Thalmeier et al., 2016; Abbott et al., 2016). As a consequence, I assume that computation
with rate neuron models is still in its fledgling stages and the advantages of communication
via spikes will arise with ongoing research.

When it comes to synapses, dynamics can be describe as changes in conductance or current.
Similar to the neuron’s intrinsic input integration, the current synaptic input processing
might include the information of previous incoming spikes (with memory). In addition,
synapses can be static or plastic. Plastic synapses increase (potentiate) or decrease (depressed)
their weights in accordance to the specific coupling of pre- and postsynaptic neuronal spiking
and thus provide a basis for memory storage(Takeuchi et al., 2014).

After having defined the main components of a neuronal circuit, I would like to illustrate
how computation can be carried out by such a network based on two basic example tasks:
classification and time- series prediction.

In a classification task, different realizations of inputs are assigned to different groups accord-
ing to their features. The simplest classification can be carried out by a single Perceptron,
which is a binary neuron that weights the input (an array of real numbers) through its
synapses and computes a step function on this sum of the weighted inputs. Thus, if the
sum of the weighted input is larger then a defined threshold, it outputs a one, and a zero
otherwise. Consequently, a single Perceptron allows the classification into of groups. If the
input connects to more, e.g n binary neurons and the groups can be separated linearly, a
maximum of n2 groups can be classified. If the classification task is non-linear, more layers of
binary neurons have to be connected in a feed-forward manner in order to achieve an accurate
classification (Gardner & Dorling, 1998). Although binary neurons are more amenable to
analysis, they are often not so powerful, if the classification task is more complex. In these
cases, spiking and particularly rate neuron networks are preferable.

In order to describe the second task, I will give a little background information: The successful
surviving of an individual highly depends on its ability to predict the future states of changing
processes in its environment based on previous observations and of course, on its ability to
adapt its own behavior in the most favorable way. The prediction of future states applies to
short and long time scales and different degrees of complexity. A simple example on a short
time scale and low complexity might be the calculation of the movement of a fast approaching
predator, such that an appropriate escape or defense behavior can be initiated. How the
brain can manage such complex time-series predictions is still an open question. Specific
neuronal networks with recurrent connections have been shown to be able to accomplish
such tasks. An example is given by the echo state networks introduced by Jaeger 2002. Such
a network consists of a big pool of recurrently connected neurons (so-called reservoir) with
random but fixed connection weights. This network is recurrently connected to an output
neuron. As described in Jaeger & Haas (2004), the weights of the connections from the output
neuron to the reservoir are fixed and do not change during the training period. However, the
connection weights from the reservoir to the output neuron are adjusted during the training
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phase such, that the activity of the output neurons converges to a predefined time series.
In the test phase, only the first points of the time trace are provided and the activity of the
reservoir drives the activity of the output neuron such, that it predicts the time series.

These two examples have been chosen, because they demonstrate in an easily understandable
manner how real-world tasks can be translated into an input-output function and, at the
same time, do not require complicated network architectures. As already indicated earlier,
tasks and networks can be arbitrary complex. However, even if a certain network structure
provides a good substrate for solving a specific task, it does not automatically imply that
the brain uses similar structures and strategies for a similar purpose. In addition, there are
some tasks, that the brain manages but which cannot currently be achieved (in a biologically
plausible way) with simulated network models. For example, one-shot learning (learning
after one single trial, without repetition) cannot be achieved by common biological neuronal
network model. It require features that are not found in the brain so far, such as on-off-
switching of synapses.

In terms of Alzheimer disease (Sec.1.1), questions which, for example, can be addressed
with simulation are: Which are the exact morphological alterations that cause a particular
cognitive impairment e.g. memory decline and what are the underlying mechanisms? What
are the mechanisms that counteract the decay in cognitive performance and how do they
work? Is AD mainly a disease that occurs because homeostatic mechanisms outreach their
capacity or because normal perturbations cause increased damage due to malfunctioning of
homeostatic mechanisms?

1.5 Dealing with Alzheimer’s disease and its effects on homeo-
static regulation

An introduction to the other chapters of this thesis

In this section, I will describe how a rich homeostatic regulation interferes with disease
understanding and diagnosis. Then, referring to AD, I will shortly summarize how these
problems can be addressed in general, and introduce my approaches, which are explained in
more detail in the following chapters.

In subsection Sec.1.2, I have given an introduction to homeostasis, explaining how the
coordinated interplay of controlled variables ensures that the regulated variable stays in its
physiological regime. But, what happens to the controlled variables, if the regulated variable
gets pushed out of its physiological range? This pathological state can occur for several
reasons, e.g a wrong set point as target or problems with controllers.

The first observation is that, considering a single controlled variable, the comparison of the
marginal distributions across the subjects of two different health conditions (’healthy’ and
’having a particular disease’) reveals differences. But these differences might be small, such
that the two distributions still highly overlap, and a full separation of the health states would
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be only feasible, if the values of all involved controlled variables were projected to a high
dimensional space (see Fig.1.5). I suspect, that the more controlled variables are involved
in a particular homeostasis, the more likely it is, that a marginal distribution of a single
controlled variable across subjects might not change a lot under disease conditions , because
other controlled variables already fulfill its function. The resulting small differences in the
marginal distributions across health conditions are hardly detectable.

As a result, a diagnosis of a disease, that interacts with a rich homeostatic system, is difficult,
if the regulated variable is not known or measurable (if it was known and measurable, disease
diagnosis could be based on the regulated variable), because all controlled variables have to
be extracted and analyzed in order to clearly distinguish between health conditions. This
implies that all controlled variables are measurable and that the differences in their marginal
distributions are detectable. In addition, a method that allows for an analysis of the data in a
higher dimensional space, has to be established.

For disease understanding, the consequences of a rich homeostasis are even more challenging.
In this case, it is important to figure out, whether a change in a variable is directly caused by
the pathogenic factor or whether it is part of the homeostatic response of the system. This
requires knowledge of the exact interaction of the involved variables, and in particular of
alternative signaling pathways, which are only activated as a consequence of the disease and
not detectable under physiological circumstances. It is also possible that a disease corrupts
multiple homeostatic systems on many scales, which even worsens the situations. This seems
to be the case in AD (as explained in detail in Sec.1.3).

A first common step towards diagnosis and understanding a disease is to figure out, which
variables change their distributions in the course of the disease. This is often done based
on significance tests, in which the variables of the healthy and the diseased population are
tested for having the same mean values or the same distributions. Since the nullhypothesis of
such a test is that the means/distributions are equal, a small significance level indicates a low
probability of this hypothesis and in turn, a high probability that the means/distributions
are different. But even if the means of the two distributions are significantly different, it is
important to keep in mind, that the specific experimental and data analytical settings matter
and results should not be generalized, if not tested with equivalent but different analytical
tools. In particular, it should be avoided to tune analysis steps aiming at the highest possible
significance level, especially if the data set is small. In general, the more complex the data
analysis is, the more important it is to show the robustness of the results with respect to
methodical variants.

Also problematic is the conclusion that significance automatically indicates a good diagnostic
power. This might be a necessary (if the data set is large) but not a sufficient criterion because
the underlying distributions can still highly overlap such that for a huge span of values of
the particular marker (which is a variable that indicates a disease) a high probability for
both health conditions is given (see Fig.1.5, note that the histograms in this figure roughly
approximate corresponding probability distributions).

So, what would be a suitable assessment criterion for a disease marker, or better, for a set of
markers with overlapping distributions? Commonly, disease markers are often evaluated
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based on their sensitivity (the proportion of true positives) and specificity (the proportion
true negatives) of a test data set. This implies that a marker or a set of markers allow for
a ’yes’ or ’no’ answer. This can be either achieved by assigning such a label to the health
condition with highest probability or by applying machine learning algorithms that allow for
a classification of the data.

Based on fMRI graphs (see Sec.1.4.1) machine learning algorithms have shown very good
results with respect to psychiatric disease classification, e.g. in AD a classification power
above 90% has been reported (Khazaee et al., 2015, 2017) and in Schizophrenia similar values
have been reached (Çetin et al., 2016; Venkataraman et al., 2012). So why not using classifiers,
if they are so successful? The disadvantage of classifiers, apart from problems involving
over-fitting or a too small training data sets, is the result itself, a classification, which is not
very suitable for diagnosis. The problem here is, that a diagnosis test should be combinable
with other tests, which is difficult with a ’yes, she has AD’ or ’no, he has not AD’ decision.

In another approach a probability for the health condition of a patient given a test result is
derived. This is already much more useful, because it preserves the information about the
level of (un)certainty, and can be combined with other probabilities from other tests in order
to calculate the final probability. In this context, a suitable set of disease markers should result
in probability distributions that will in almost all cases correctly assign a high probability to
one of the possible health conditions and a low probability to the others.

In the next chapters of this work, I focus on two systems on different scales, in which AD
is likely to have an impact on their homeostatic regulation: the first system is a metascale
network of functionally connected brain areas (see Ch.2 and Ch.3) and the second is a
mesoscale network of spiking neurons (see Ch.4). At the mesoscopic scale of individual
neurons, the firing rate is most likely a regulated variable in AD (see Sec.1.3). With respect to
the meta-scale network, it is not known yet, in how far functional whole-brain connectivity
underlies direct homeostatic control. First hints for this type of global homeostasis has been
given in the context of simulating the generation of seizures in an EEG model (Chakravarthy
et al., 2009). Even if functional connectivity is not subject to direct homeostatic control, the
activities of individual areas underlie homeostatic control, and homeostatic misregulation in
these areas will affect functional connectivity.

In Ch.2 I will describe, how variables with highly overlapping distributions across health
conditions can be used for disease diagnosis and how, for that purpose, the statistical model
is constructed. In this case the variables are derived from functional connectivity measures.
For some psychiatric diseases such as Schizophrenia or AD, in which large brain structures
are affected, the functional connectivity is likely to be altered in any sort. It is a welcome
potential disease marker due to the non-invasive nature of MRI scans and and the already
well established usage of the fMRI scanners in the western medical infrastructure.

The diagnostic power of a set of markers highly depends on the suitability of the underlying
statistical model, which is based on assumptions made on the data. Unfortunately, these
assumptions are often not really known and the statistical model is chosen in a rather ad-
hoc manner. This profound problem will be particularly addressed in Ch.2 of this work,
which describes how probabilities or rather likelihoods can be derived in a step by step
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manner starting from first principle. Therefore, it explains how statistical models can be
constructed based on only a few but simple assumptions such as partial exchangeability and
sufficient statistics and demonstrates how the exact realization of these assumptions shapes
the final model selection. In addition, it explains how the different models can be compared
among each other with respect to a possible medical usage and how side effects of a possible
treatment can be accounted for by means of a utility function.

The investigation of the different statistical models, their underlying assumption and practic-
ability in Ch.2 forms the basis of the statistical analysis with which fMRI data is analyzed
in Ch.3. In Ch.3 I apply different graph construction methods (see Sec.1.4.2) to functional
MRI data (see Sec.1.4.1) and compare the resulting graph properties with respect to their
diagnostic power in AD.

As described in Sec.1.1, AD is a disease that destroys the brain in many respects at different
times, primarily triggering synaptic dysfunction, but also other neuronal activity independent
changes such as vascular alterations. Both aspects are captured by fMRI (compare Sec.1.4.1).
This suggests that alterations of the functional connectivity in all disease stages are very
likely. The distributions of the graph properties are, however, overlapping, as I show in
Ch.3. This overlap may be very prominent at the beginning of disease manifestation, because
the disease has not driven the system far from its healthy state. However, as explained in
Sec.1.1, an early diagnosis in AD is essential. In order to address this issue, I study the graph
properties not only of AD patients, but also of individuals with mild cognitive impairment
(MCI), a potential pre-stage of AD.

In this context, I also analyze the role of significant differences in the distributions of the
graph properties such as the clustering coefficient. In particular I demonstrate that different
graph construction methods can lead to contradicting significant relationships of graph
properties across health conditions.

FMRI BOLD signals contain both a vascular and a neuronal activity component (see Sec.1.4.1).
A more detailed picture, allowing for discriminating the underlying processes can be obtained
by calibrated fMRI. So far, only a single study of calibrated fMRI has been published in AD
research (Lajoie et al., 2017). This study reports a hypomethabolism in parietotemporal
regions reflecting decreased neuronal activity. Thus, in early states of AD, changes in the
BOLD signal seem to reflect altered neuronal activity. If altered graph properties mainly
reflect altered neuronal activity and not vascular alterations, it would be desirable to figure
out whether the cause of these alterations is of homeostatic nature or a direct consequence
of disease pathology. A first step towards addressing this question, is the investigation of
disease-caused modifications and possible compensation mechanisms in local networks. The
reason is that changes in the activity of local networks will most likely alter the functional
activity of the global network.

In Ch.4 of this work, I investigate the effect of AD and firing-rate homeostatis on the dy-
namical and computational properties of recurrent neuronal networks. I conjecture, that if
homeostasis can recover the computational performance and the activity statistics of a small
network of spiking neurons, it will also recover the functionality of a large-scale network.
For reasons of simplicity, I restrict myself to implement AD as a loss of excitatory-excitatory
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synapses and homeostasis as an upscaling the remaining excitatory-excitatory synapses. I
primarily focus on the network’s sensitivity to a small perturbation.

In the last chapter (Ch.5), I summarize the findings of the studies presented in Chs.2-4 and
discuss, how they integrate with the results of previous work and give a short outlook.

Figure 1.5: Sketch of a homeostatic system comprising three controlled variables. A regulated
variable, that is controlled by only three controlled variables (variable A, B and C), changes its value
in the course of a disease (healthy: black, diseased: purple). Each dot represents an individual.
Even if the marginal distributions highly overlap (black and purple histograms), a separation of the
two different health conditions based on the three controlled variables is possible, if the values are
embedded into a three dimensional space (joint distribution). In a living organism we usually have
many more controlled variables, but only some of them can be observed. The combined information
of a subset of controlled variables, represented by the joint distribution, can improve the separation of
the health conditions.



23

Chapter 2

Inferring health conditions from
fMRI-graphs

Automated classification methods for disease diagnosis are currently in the limelight, es-
pecially for imaging data. Classification does not fully meet a clinician’s needs, however:
in order to combine the results of multiple tests and decide on a course of treatment, a
clinician needs the likelihood of a given health condition rather than binary classification
yielded by such methods. We illustrate how likelihoods can be derived step by step from
first principles and approximations, and how they can be assessed and selected, using fMRI
data from a publicly available data set containing schizophrenic and healthy control subjects,
as a working example. We start from the basic assumption of partial exchangeability, and
then the notion of sufficient statistics and the “method of translation” (Edgeworth, 1898)
combined with conjugate priors. This method can be used to construct a likelihood that
can be used to compare different data-reduction algorithms. Despite the simplifications
and possibly unrealistic assumptions used to illustrate the method, we obtain classification
results comparable to previous, more realistic studies about schizophrenia, whilst yielding
likelihoods that can naturally be combined with the results of other diagnostic tests.

2.1 Introduction

A 29-year-old man seeks medical advice because he finds himself in a very confused state.
The clinician, after listening to the complaints of the patient, identifies some diseases that
would account for the symptoms. However, the presentation is not clear cut, and treatment
for some of the potential conditions have significant side effects. To come to a decision
on the best course of action, the clinician decides to perform the differential diagnosis in a
mathematically sound manner (Sox et al., 2013), first assigning an initial probability for the
patient’s being healthy or having each of the potential conditions, taking into account age,
sex, familial factors, symptoms, a psychological evaluation, the incidence of the disease, and
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similar prior information:

P(health condition | prior info). (2.1)

Then she orders one or more diagnostic tests to make a better informed assessment of the
probabilities of the considered diseases. Among these tests she orders a structural and
functional magnetic resonance imaging (MRI) scan. The advantage of MRI lies in the non-
invasive monitoring of brain structure and activity; the structural image (sMRI) is used to
exclude morphological changes in the brain such as tumours, and the functional imaging
(fMRI) can provide information about changes in brain activity.

With the results of the tests and of the sMRI and fMRI, the clinician updates her initial or
prior probability to a “post-test” or posterior probability based on the results, according to
Bayes’s theorem:

post-test probability︷ ︸︸ ︷
P(health condition | results of all tests ∧ prior info) ∝

initial probability︷ ︸︸ ︷
P(health condition | prior info) ×

likelihoods



P(result of first test | health condition ∧ prior info) ×
P(result of second test | health condition ∧ prior info) ×

· · · ×
P(result of sMRI | health condition ∧ prior info) ×
P(result of fMRI | health condition ∧ prior info)

(2.2)

where “∧” denotes the logical conjunction (“and”), and we have reasonably assumed that the
result of each test does not depend on those of the other tests, i.e. that their likelihoods are
independent (Jaynes, 2003, Sec. 4.2; Sox et al., 2013, Sec. 4.7).

In the update formula above, the initial probability is assessed by the clinician. To calculate
the post-test probability she needs the probabilities for each test result conditional on the
health condition, either “healthy” or “presumptive disease”. These probabilities are called
the likelihoods for the health condition in view of each test. The term “likelihood” has its
standard technical meaning in the present work: the probability of a proposition A given B is
P(A|B), while the likelihood of A in view of B is P(B|A), i.e., A appears in the conditional
(Jaynes, 2003, Sec. 4.1; Good, 1950, Sec. 6.1). A proposition can have high probability but low
likelihood and vice versa. Probabilities, not likelihoods, are what we base our decisions on.

The final, post-test probability is necessary to the clinician to decide upon a course of action
(Sox et al., 2013, Ch. 6; Goodman, 1999; Murphy, 2012, Sec. 5.7); for example, to treat the
patient according to one or another specific treatment, to dismiss him, or to order more tests.
To make such a decision the clinician will combine her post-test probabilities for the health
conditions with a utility table (a reminder of decision theory is given in Sec. 2.4.3).

In the following we assume that one of the presumptive diseases the clinician has in her mind
is schizophrenia. Although currently, MRI does not play a role in a diagnosis of schizophrenia,
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there are substantial efforts to develop such analyses for this purpose (Silva et al., 2014). In
this work, we focus on the diagnosis of this particular disease simply as a concrete worked
example, to demonstrate how results of a diagnostic test, in this case results from function
MRI imaging, can be incorporated in the diagnostic process in a principled fashion.

In short, we address the question: how can we assign a numerical value to the likelihood

P(fMRI result | health condition ∧ prior info). (2.3)

of each health condition (’healthy’ or ’schizophrenic’) in view of the fMRI result? We will
propose an answer that can be applied for any brain disease.

To this end it is useful to mark out some features of the approach presented so far:

I.Modularity. The update formula (2.2) combines evidence from different tests, and this com-
bination does not need to be done at once. The clinician can multiply her initial probability
by the likelihood from the first test, normalize, and thus obtain a “post-first-test” probability.
Later she can multiply this probability by the likelihood from the second test, normalize,
and thus obtain a post-second-test probability; and so on with any number of other tests, a
number that the clinician does not need to fix in advance. She can therefore store the value of
the likelihood from the fMRI result, to later combine it with new likelihoods from future tests
to form a new, better-informed post-test probability.

II.Decision-theoretic character. The clinician’s final goal is not simply a
healthy/schizophrenic classification, but a decision upon a course of action about the
patient (Sox et al., 2013, Chs. 6, 7; Jaynes, 2003, Chs. 13, 14; Raiffa & Schlaifer, 2000). This
distinction is important: for example, a treatment without contraindications might be
recommended even if there is only a 10% probability that the disease is present; or a
dangerous treatment might be recommended only if there is a 90% probability that the
disease is present.

The modularity of the present approach extends to the decision stage, because the post-test
probability can be used with different decisions and utilities, which can also be updated later
on. For example, after beginning a treatment the clinician happens to read about a new kind
of treatment, having new benefits and contraindications. Using the post-test probabilities she
already has, she may re-evaluate her decision using an updated utility table that includes the
new treatment.

III.Incomplete knowledge. In general, we lack a complete biological understanding of
the relation between brain activity and the health condition under study. In this case, the
likelihoods can only be assessed by relying on examples of known health condition–fMRI data
pairs, usually called a training or calibrating dataset. Moreover, this training dataset is often
very small.

IV.High dimensionality. The fMRI data are positive-valued vectors with 107–108 components
or more (Lindquist, 2008). This high dimension impacts the calculation of likelihoods and
probabilities.

The first two points above are great advantages of the present approach, and also the reasons
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why it cannot be based on machine learning algorithms for deterministic classification;
such methods give the clinician a dichotomous, “healthy/schizophrenic” answer, with no
associated uncertainty. This answer cannot be used by the clinician to weigh the benefits
and risks of different courses of action, an assessment which needs the probabilities of the
health conditions. Probabilistic algorithms, on the other hand, are not flexible for combining
evidence: they give a probability for the health condition, not a likelihood; and only the
latter can be combined with the likelihoods from other tests, or stored for later reuse and
combination.

We therefore approach the question of assigning the likelihoods (2.3) by means of the prob-
ability calculus, the same calculus from which Eq. (2.2) is derived. What we will do is in
essence no different from current Bayesian statistical analyses and modelling; but we would
like to emphasize some aspects of this modelling that are usually left in the background.
The probability calculus can be regarded as the extension of formal logic (truth calculus) to
plausible inference (Jeffreys, 2003; Jaynes, 2003; Hailperin, 1996), a view also supported in
medicine (Greenland, 1998; Maclure, 1998; Goodman, 1999), which has been proven with
increasing rigour by Koopman (1940b; 1940a; 1941), Cox (1946; 1961; 1979), Pólya (1949;
1968), and many others (Horvitz et al., 1986; Paris, 2006; Halpern, 1999; Snow, 1998; Dupré &
Tipler, 2009; Terenin & Draper, 2017). The derivation of a probability proceeds much like an
“axioms → logic rules → theorem” derivation in formal logic: one starts from the probabilities
of some propositions, and by applying the probability rules, arrives at the probability of the
desired proposition, Eq. (2.3) in our case.

We will show this procedure step by step in the case of our problem, in order to expose where
assumptions and approximations enter the derivation. These may be improved by other
researchers, or replaced by different ones when the method is applied to a different problem.
Our discussion is inspired by Mosteller & Wallace’s (Mosteller & Wallace, 1963) brilliant,
thoughtful analysis of a statistically similar problem in a very different context.

The approach we follow deals naturally with the four points listed above. The small size of
the training dataset, point III. above, is not an issue because the probability calculus allows
for training datasets of any size. In fact, the calculus allows us to continuously update our
inferences given new training data, making our inferences more and more precise and less
likely to be affected by outliers.

The unmanageable size of our data space, point IV. above, will force us to make auxiliary
assumptions that will translate into the choice of a reduced data space, discussed in Sec. 2.2.3,
and into the use of parametric statistical models, discussed in Sec. 2.2.4. Regarding the
latter, we will emphasize that assumptions about relevant and irrelevant information in
our data may translate into mathematical statistical models. It is often difficult to relate
biophysical considerations about quantities measured in the brain to the shape of a probability
distribution, especially in multidimensional quantities. The notion of sufficient statistics
(Dawid, 2013; Bernardo & Smith, 2000, Ch. 4; Lindley, 2008, Sec. 5.5; Diaconis & Freedman,
1981; Cifarelli & Regazzini, 1982; Lauritzen, 1988; Kallenberg, 2005), discussed in Sec. 2.2.4.2,
is a helpful bridge between biophysical considerations and probability distributions. The idea
is that it may be easier for us to conceive a connection between biophysical considerations and
some special statistics of our measurements, than between biophysical considerations and an
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abstract multidimensional distribution function. This “translation” is powerful, because if
one finds the assumptions about relevance or irrelevance of some data unreasonable, one can
then make different assumptions, resulting in a different statistical model.

Models inspired by sufficient statistics – especially their comparison and selection – can
nevertheless be computationally demanding owing to the multidimensional integrals in their
formulae, even when these are addressed by modern numerical methods such as Monte
Carlo (MacKay, 2003, Ch. IV; Murphy, 2012, Chs. 23–24). In the present study we shall use
analytically tractable statistical models, but availing ourselves of Edgeworth’s “Method of
Translation” (1898), (Johnson, 1949; Mead, 1965): the simple but potentially very fertile idea
of transforming a quantity into a normally distributed one, discussed in Sec. 2.2.4.3.

The combined choices of reduction of the data space, of sufficient statistics, and of transform-
ations into normal variables, lead to a variety of possible models and likelihoods to be used
by the clinician. Which is the “best” one? We discuss several criteria for choice in Sec. 2.2.5,
settling on one based on expected utility. We also briefly discuss the remarkable observation
that common Bayesian criteria based on weight of evidence and Bayes factors (Jeffreys, 2003,
Chs. V, VI, A; Good, 1950; MacKay, 1992a; Kass & Raftery, 1995) for the fMRI data gives
results opposite to those of the expected-utility criterion.

In this article, we will calculate the likelihoods for the health conditions, Eq. (2.3), and
assess the models according to the following steps. First, in Sec. 2.2.1, we briefly discuss
schizophrenia and the use of fMRI to diagnose it, introducing a concrete dataset of fMRI data
for schizophrenic and healthy patients. We then show that a simple and natural assumption,
called exchangeability, would lead to a unique value of the likelihoods (2.3), if the training
dataset were large enough (Sec. 2.2.2). However, with a small training dataset we must face
two problems: unmanageably large dimensions of the data space, and the need to specify
prior beliefs, also involving functions on infinite-dimensional spaces.

To solve the first problem, in Sec. 2.2.3 we assume that information adequate for our health
inference can be found in a reduced data space of the fMRI, which we construct from time
correlations between groups of voxels. To solve the second problem we introduce parametric
statistical models in Sec. 2.2.4 using the notions of sufficient statistics and of transformation
into normal variables, mentioned above. We discuss how these models learn from the data
and select three models as possible candidates. We then consider several criteria to select
one of the three models against our data, as an example, and discuss how a more realistic
assessment could be made in a real application (Sec. 2.2.5 ). We conclude with a discussion
(Sec. 2.3) on how the choice of sufficient statistics and prior probabilities could be improved,
and on the relation to machine-learning methods.

Our statistical terminology and notation follow ISO standards (ISO, 2009, 2006).
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2.2 Results

2.2.1 Selection of clinical use case and fMRI-data acquisition

Schizophrenia is a psychiatric disorder that comprises various symptoms that are categorized
into positive (e.g. hallucinations), negative (e.g. loss of motivation) and cognitive (e.g.
memory impairment) disease patterns. A common disease cause for all these widespread
symptoms is still unknown. Functional magnetic resonance imaging (fMRI) has been used
to gain insight into modifications in functional connectivity in this disease. In the resting
state, functional connectivity is measured either by asking the subject to fulfil a certain task
or at rest, instructing the subject to think about nothing specific but not fall asleep. In this
condition, both increased and decreased functional connectivity have been reported in the
default mode network, although the hyperactivity seems to be reported more often (Hu et al.,
2017). Moreover, widespread connectivity changes in the dorsal attention network and the
executive control network have been detected (Woodward et al., 2011; Yu et al., 2016).

Beyond these individual sub-networks, many studies have found profound changes in
macroscopic brain structures, e.g. a shrinkage of whole brain and ventricular volume,
reduced gray matter in frontal, temporal cortex and thalamus, and changes in white matter
volume in frontal and temporal cortex (Shenton et al., 2010; Ellison-Wright & Bullmore, 2009,
2010). Since both gray matter loss and white matter changes are found, it is reasonable to
conclude that not only the intrinsic activity of single areas is modified, but also the interplay of
different brain areas, in particular in frontal and temporal cortex. It has been argued that these
alterations in long range connectivity are responsible for a range of disease symptoms that are
not attributable to single areas (Friston & Frith, 1995). Taking this disconnect hypothesis as a
starting point, we can reach the working hypothesis that these changes are also reflected in the
functional activity of the brain, and that fMRI images can be used to distinguish schizophrenic
from healthy patients. We therefore conclude that schizophrenia is an appropriate condition
to demonstrate our approach.

We requested data of schizophrenic and healthy patients from Schizconnect1, a virtual
database for public schizophrenia neuroimaging data. In our request we asked for resting
state T2*-weighted functional (rfMRI) and T1-weighted structural magnet resonance images
(MRI) from patients participating in the COBRE study either with no known disorder or
diagnosed as schizophrenic according to the Diagnostic and Statistical Manual of Mental
Disorders (DSM) IV, excluding schizoaffective disorders. In the COBRE study, the voluntary
and informed participation of the subjects was ensured by the institutional guidelines at
the University of New Mexico Human Research Protections Office. The ensuing dataset
comprised 91 healthy patients and 74 schizophrenic patients. Out of these we randomly
selected 54 healthy and 49 schizophrenic subjects, to permit demonstration our method on
a small dataset with unequal group size. A detailed description on the exact experimental
design and the MRI scanning is provided by Çetin et al. (2014).

1http://schizconnect.org/
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2.2.2 Calculation of probabilities: exchangeability

Let us describe our context more precisely and set up some mathematical notation. We have:

•A number of possible health conditions, in our example healthy (H) and schizophrenic (S).
The variable c denotes health condition.

•A space of possible fMRI data. They are vectors with 107–108 or more positive components
(Lindquist, 2008). The variable f denotes an fMRI result.

•A set of n patients, labelled in some way, the variable i denoting their labels. These labels may
reflect information about the times the patients were examined, or about their geographical
location. This possibility is important in the considerations to follow. In our study n = 104.

•Knowledge of the health condition and of the fMRI result of each patient. Let us use the
propositions

Cc
i := “Patient i has health condition c”,

F f
i := “The fMRI of patient i gives f”,

(2.4)

the latter to be understood within a very small interval (f ,f + df). In our study we have
nH = 55 healthy and nS = 49 schizophrenic patients.
For brevity we denote by Cc the conjunction of the propositions Cc

i for all patients having
health condition c, i.e. our knowledge about which patients have that health condition; and
analogously for F c. By Dc we denote all data about patients with health condition c; by D
we denote all our data.

•An imaginary patient, labelled “0”, whose fMRI result f is known, but whose health condition
is not.

•Other pre-test information, denoted by I ; for example the clinician’s initial diagnosis of the
health condition of patient 0, and the results of any other diagnostic tests.

•The probabilities (p̂H, p̂S) for the health condition of patient 0, conditional on the pre-test
information, including the results from other tests. We call these pre-test probabilities. Note
that they may differ from the initial probabilities of Eqs. (2.1)–(2.2), because they may include
the likelihoods from other tests.

•A set of decisions about the patient 0 and their utilities conditional on the patient’s health
condition. We shall simply consider two decisions: dismiss (D) or treat (T). See Sec. 2.4.3 for a
summary of decision theory.

Our goal is to assign numerical values to the likelihoods for the health conditions (2.3): the
conditional probability distribution that the fMRI result of patient “0” is f given the health
condition of that patient and all other data. In our notation,

p(F f
0 |C

c
0 ∧ Cc1

1 ∧ F f1
1 ∧ · · · ∧ Ccn

n ∧ F fn
n ∧ I) df

or just p(F f
0 |C

c
0 ∧D ∧ I) df .

(2.5)

A natural assumption helps us to restrict the values the distribution above may have. Within
a group of patients having the same health condition we assume that the probability that a
patient shows a particular fMRI fi does not depend on the particular value of the patient’s



30 2 Inferring health conditions from fMRI-graphs

label i, no matter how many patients we have or may later add in that health group. This
assumption is called partial exchangeability (de Finetti, 1938; Diaconis & Freedman, 1981;
Aldous, 1985; Diaconis, 1988). If the labels carry e.g. temporal or geographical information,
partial exchangeability means that we do not expect to observe particular kinds of fMRI
results more often in the future than in the past, or more frequently in one location than in
another. As a concrete example: fix three possible fMRI results f1, f2, f3 (each is a vector with
107–108 positive components) and consider the fMRI tests of three schizophrenic patients: say,
one from five years ago in Germany, one from last week in Scotland, and one to be done six
months from now in Italy. Partial exchangeability means that the probability that the German
patient’s test gave f1, the Scottish’s gave f2, and the Italian’s will give f3, is numerically
equal to the probability that the German’s gave f2, the Scottish’s f3, and the Italian’s will give
f1; and likewise for all six possible permutations of the three results. Keeping the same fixed
fMRI results f1, f2, f3, we now consider three healthy patients instead, who may also live
in different times and places. Partial exchangeability means that also in this case the values
of the six possible joint probabilities obtained by permutation must all be equal – but this
value can be different from the one for the schizophrenic patients considered before. Hence
the term “partial”: we can freely exchange the joint results within the schizophrenic group
and within the healthy group without altering their probabilities, but not across groups. This
assumption extends in an analogous way to more patients.

The assumption of partial exchangeability might not be completely true when we consider
geographical or epochal differences, but we may still consider it as a good approximation.
We are not making any exchangeability assumptions about the probabilities of the health
conditions of our patients, though, because the incidence of a disease does often change with
time and can depend heavily on geographical location.

To express partial exchangeability mathematically, suppose that the patients i = 1, 2, 3, . . .
have health condition c = H and the patients i′ = 1′, 2′, 3′, . . . health condition c = S. Then
the joint distribution for their fMRI results satisfies

p
(∧

i F
fi
i

∧
i′ F

fi′
i′

∣∣ ∧
iC

H
i

∧
i′ C

S
i′ ∧ I

)
= p

(∧
i F

fπ(i)

i

∧
i′ F

fπ′(i′)
i′

∣∣ ∧
iC

H
i

∧
i′ C

S
i′ ∧ I

)
for all permutations π of {i} ≡ {1, 2, . . .}, and all permutations π′ of {i′} ≡ {1′, 2′, . . .}.

(2.6)

The assumption of partial exchangeability is simple and quite natural – and very powerful:
it implies, as shown by de Finetti ((1938); Diaconis, 1988, Sec. 3; Bernardo & Smith, 2000,
Sec. 4.6), that the joint distributions above must have the form

p
(∧

i F
fi
i

∧
i′ F

fi′
i′

∣∣ C ∧ I
)
=

∫∫ [∏
i
qH(fi)

] [∏
i′
qS(fi′)

]
p(qH, qS| I) dqH dqS (2.7)

where qH, qS are distributions over the possible values of f , and p(qH, qS| I) is a “hyperd-
istribution” over such distributions, determined by the assumptions I . The double integral
(which can be understood as a generalized Riemann integral: Lamoreaux & Armstrong,
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1998; Swartz, 2001; Kurtz & Swartz, 2004), is over all distributions qH, qS. In other words,
de Finetti’s theorem say that the joint probability distribution for the fMRIs of healthy and
schizophrenic patients can be seen as the product of independent distributions, identical for
healthy cases and identical for schizophrenic cases but different for the two cases, mixed over
all possible such pairs of distributions with weight p(qH, qS| I).

As a very cursory example, suppose we want the joint probability that a healthy patient has
fMRI result f and a schizophrenic one f ′. De Finetti’s formula tells us to consider all possible
distributions over positive vectors. As usual with infinities, “all” must be made precise by
specifying a topology (for details see e.g. de Finetti, 1938; Diaconis & Freedman, 1981; Aldous,
1985; Diaconis, 1988); but intuitively these distributions comprise, e.g., multivariate truncated
normals, gammas, exponentials, truncated Cauchys. . . and innumerable distributions that
we can imagine and don’t have a specific name for; all with their possible parameter values.
De Finetti’s formula tells us to choose one distribution qH, from all those possible ones, for
the healthy case and one qS for the schizophrenic case, and to attach a weight to this pair,
p(qH, qS| I); then to calculate this pair at the values f , f ′ and multiply them: qH(f)× qS(f

′).
Then we consider a new pair of distributions, attach a weight to them, and again multiply
their values at f and f ′. And so on, until all possible pairs are considered. Finally we calculate
the sum of all such products, weighted accordingly:

∫
qH(f)qS(f

′) p(qH, qS| I) df df ′.

The generalization of the formulae above to more than two health conditions, or when only
one health condition is considered, is straightforward.

As the cursory example above made quite clear, an integral over probability distributions is a
mathematically complicated object (cf. Ferguson, 1974) and may not seem a great advance-
ment in assigning a value to the distribution (2.5). In defence of de Finetti’s formula we must
say that it is completely manageable with discrete data spaces and provides a great insight in
the way we reason about probability in relation to repeated events (de Finetti, 1937; Lindley
& Phillips, 1976; Kingman, 1978; Koch & Spizzichino, 1982; Dawid, 2013; Bernardo & Smith,
2000, Sec. 4.2). It also has several important consequences for our inference, which we now
discuss.

Using de Finetti’s formula and the definition of conditional probability we can rewrite our
goal plausibility (2.5) as

p(F f
0 |C

c
0 ∧D ∧ I) =

∫
qc(f) p(qH, qS|D ∧ I) dqH dqS (2.8a)

with p(qH, qS|D ∧ I) =

[∏
i qci(fi)

]
p(qH, qS| I)∫ [∏

i qci(fi)
]
p(qH, qS| I) dqH dqS

. (2.8b)

The latter is called posterior distribution since it is conditional on all data D.

Excluding pathological prior distributions (Diaconis & Freedman, 1986), this posterior distri-
bution becomes more and more concentrated on two particular distributions

(
q̂H, q̂S

)
, fully

determined by the data, as our data D comprise a larger and larger number of patients. This
concentration occurs independently of the original shape of the distribution p(qH, qS| I). In
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this limit our probability distribution (2.5) becomes

p(F f
0 |C

c
0 ∧D ∧ I) ≈ q̂c(f) (2.9)

with q̂c completely determined by the data D. This would solve our plausibility assessment
(2.5).

De Finetti’s formula therefore tells us also the theoretical limit by which the pre-test probabil-
ity for the health condition of the patient, P(Cc

0|D ∧ I), can be improved by the fMRI result.
For example, if q̂c(f) is more or less uniform in f or has the same peaks in f for each c, then
the fMRI is of no use for discriminating the health condition of the patient. This result follows
mathematically from the assumption of exchangeability (2.6) and the rules of probability
calculus, hence no amount of ingenuity could overcome this limit.

In our case the amount of data D is not enough to allow the use of the approximation (2.9).
We should use the general formula (2.8), but it is unwieldy in two respects. First, the fMRI
result f of a patient is a positive-valued vector with 107–108 components or more (Lindquist,
2008), so the distributions qH, qS are highly multidimensional. Second, the formula asks us to
consider in principle all such distributions, as explained in the example above.

We tame this double unwieldiness in two ways. First, it is conceivable that not all information
contained in the fMRI result f of a patient be relevant to discriminate the patient’s health
condition c. The integral in Eq. (2.8), if it could be performed, would automatically winnow
out the relevant information (Jaynes, 2003, Ch. 17), possibly reducing the problem to a lower-
dimensional set in the space of fMRI data. Being unable to perform the integral, we must
try to apply heuristics based on our understanding of the target conditions and perform
such dimensional reduction by hand. For example, by employing the hypothesis that in
schizophrenic patients the time correlation between brain regions is altered with respect to
healthy ones. We can thus address the first problem by reducing fMRI data f to a manageable
set of graph properties f , and applying our inference directly on these, as explained in the
next section.

Second, we entertain a working assumption about which features of our graph data {fi}
from a set of patients are relevant for inferences about new patients. We can, for example,
assume that only the first and second moments are relevant for making predictions about the
graph quantities to be observed in the new patients; these moments are then called sufficient
statistics. Assumptions of this kind reduce the infinite-dimensional space of all possible
distributions (qH, qS) to a finite-dimensional space of a parametric family of distributions of
exponential type, as explained in Sec. 2.2.4.

2.2.3 Trimming the data space: functional connectivity

The preprocessed functional image in standard space, in which the activity for each voxel is
recorded, consists of approximately 1017 time series of 140 time points. We reduce this huge
data space by the following steps.
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First, we consider only the activity of the voxels belonging to the 94 regions defined by
the lateral cortical Oxford atlas (see Sec. 2.2.1 and Desikan et al., 2006) and average the
activity of all voxels in a region (details in Sec. 2.4.1). Second, we measure the functional
connectivity defined by the Pearson correlation coefficient between pairs of regions, obtaining
94 × 93/2 = 4371 connectivity weights. This is still a considerable data space for our
computational resources, so we select d = 40 connectivity weights that exhibit the greatest
difference in their connection weight average across the schizophrenic and healthy groups.

The resulting distributions for four of these connectivity weights are depicted in Fig. 2.1.
Note that for each considered brain connection, the histograms of the healthy group and the
schizophrenic group display significant overlap, such that none of them could be used in
isolation to reliably discriminate between two groups.
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Figure 2.1: Distributions of functional connectivities of schizophrenic and healthy patients. Nor-
malized density histograms of connectivity weights for healthy (H, yellow, solid) and schizophrenic
(S, red, dashed) patients of four cortical connections selected to demonstrate our statistical framework.
Empirical means are shown as vertical lines. All connectivities for healthy and schizophrenic patients
have substantial overlap, evidenced by the darker regions in the histograms.

Our data space is therefore vastly reduced, from [0,∞[10
17

to [−1, 1]40.

We let the symbol f stand for the set of connectivity weights extracted from the fMRI
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data, rather than the full fMRI data themselves. With this new meaning of the symbol f ,
the likelihoods for the health conditions (2.5) and de Finetti’s formulae (2.7)–(2.8) remain
formally unchanged, but now involve a data space with much fewer dimensions.

2.2.4 Trimming the distribution space: models by sufficiency and generalized
normals

2.2.4.1 Parametric models

The integrals in de Finetti’s formulae (2.7)–(2.8) still represent a mixture of all imaginable
pairs of probability distributions (qH, qS) over the space [−1, 1]d, and are therefore extremely
complex. We now examine two ways to reduce this integral to a manageable set of distribu-
tions and to obtain analytically tractable formulae.

In the Bayesian literature, the complication of considering all possible distributions qc(f)
of the quantity f is typically sidestepped by restricting them to a finite-dimensional set
of distributions Lc(f |θc), identified or indexed by a finite number of parameters θc. For
this reason, such a set is called a parametric family of distributions. An example of a
parametric family is the set of d-variate normal distributions parameterized by their mean
µ and covariance matrix Σ. With this restriction, the integrals in de Finetti’s formulae (2.7)
and (2.8) represent mixtures of distributions within the parametric family, the weight for
each distribution being represented by a weight for its parameters. That is, we are no longer
considering mixtures of all possible multivariate truncated normals, gammas, exponentials,
etc., as in the example of Sec. 2.2.2, but only mixtures of truncated normals, say, with different
means and covariance matrices. These integrals are thus ordinary finite-dimensional integrals.
What happens to formulae (2.7)–(2.8) is that

qc(f) is replaced by Lc(f |θc), p(qH, qS| I) dqH dqS is replaced by p(θH,θS|M, I) dθH dθS.
(2.10)

The distribution Lc is called the likelihood of the parameters θc , and p(θH,θS|M, I) is the
prior parameter distribution. A parametric family and a prior distribution over its parameters
are jointly called a parametric statistical model, which we denote by M . The term “model” is
justly criticized by some probability theorists (see e.g. Besag & Kalman in Besag et al., 2002)
but widely used, so we shall adopt it here.

In our present problem, the parametric statistical model needs not be the same for all health
conditions: for example, we could use normal distributions for one condition and beta
distributions for another, if that choice had better reflected the distributions of connectivity
weights under the two different health conditions. For this reason, we use the subscript “c” in
the formulae above. The likelihood we want to determine, Eq. (2.5), thus becomes, following
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de Finetti’s formula Eq. (2.8) and applying the replacements (2.10),

p(F f
0 |C

c
0 ∧D ∧M ∧ I) =

∫
Lc(f |θc) p(θH,θS|D,M, I) dθH dθS (2.11a)

with p(θH,θS|D,M, I) =

[∏
i Lci(fi|θci)

]
p(θH,θS|M, I)∫ [∏

i Lci(fi|θci)
]
p(θH,θS|M, I) dθH dθS

. (2.11b)

2.2.4.2 Models by sufficient statistics

The choice of a statistical model often appears as an art and a matter of experience. Notable
statisticians have voiced concerns over the esoteric character of this choice. Dawid (1982a,
p. 220) says: “Where do probability models come from? To judge by the resounding silence
over this question on the part of most statisticians, it seems highly embarrassing”. And
Diaconis (1988, Sec. 8, p. 121) remarks:

de Finetti’s alarm at statisticians introducing reams of unobservable paramet-
ers has been repeatedly justified in the modern curve fitting exercises of today’s
big models. These seem to lose all contact with scientific reality focusing attention
on details of large programs and fitting instead of observation and understanding
of basic mechanism. It is to be hoped that a fresh implementation of de Finetti’s
program based on observables will lead us out of this mess.

Authors like these have also tried to develop intuitive methods for choosing a model, for
example by proving that a parametric family can be uniquely determined by some symmetry
assumptions about our inferences, or by other information-theoretical properties (Bernardo
& Smith, 2000, Ch. 4; Lindley, 2008, Sec. 5.5; an enlightening discussion of this topic is given
by Dawid, 2013). In the present study we want to emphasize, as Cifarelli & Regazzini (1982)
did, that a statistical model can be chosen by selecting a sufficient statistics (Kolmogorov, 1942;
Freedman, 1962; Diaconis & Freedman, 1980, 1981; Cifarelli & Regazzini, 1982; Lauritzen, 1988;
Diaconis, 1992; Kallenberg, 2005, and the textbook references above). Here is an example.

Imagine that we have patients labelled i′ ∈ {1′, 2′, . . .}, and n patients labelled i ∈ {1, 2, . . .},
all with the same health condition. Of the second set of patients we also know the con-
nectivity weights {fi} obtained by fMRI. We want to specify the joint probability distribution
p({fi′}| {fi}, I) that the fMRIs of the patients {i′} yield connectivity weights {fi′}, condi-
tional on our knowledge of the connectivity weights of the n patients {i}. Now assume that
the probabilities for the fMRI results are exchangeable, so that de Finetti’s formulae (2.7)
and (2.8) hold. Also assume that in order to specify the joint distribution we do not need the
full set of data {fi}, but only their number n and some statistics, e.g. the empirical mean and
covariance matrix of these data,

f :=
1

n

∑
i fi, Cov(f) :=

1

n

∑
i(fi − f)(fi − f)⊺; (2.12)

the rest of the details of the data {fi} being irrelevant. In other words, we are assuming
that the statistics above are sufficient for us to make predictions as if we had the full data. In
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symbols,
p({fi′}| {fi}, I) = p({fi′}|n,f ,Cov f , I). (2.13)

If this is true regardless of the number of patients {i′} and {i}, then these statistics are called
(predictive) sufficient statistics. There are several notions of sufficiency, including the traditional
one by Fisher (1922) and Neyman (1935), but they all are more or less equivalent (Bernardo &
Smith, 2000, Sec. 4.5.2).

The assumption of the existence of sufficient statistics has a very important consequence
for de Finetti’s formulae (2.7) and (2.8): the space of possible prior distributions is hugely
reduced, constrained to be non-zero only over a parametric family of distributions that is
determined by the sufficient statistics. The replacement (2.10) takes place, leading to the
simpler formula (2.11) for the likelihoods of the health conditions. The number of parameters
is equal to that of the sufficient statistics. The proof of this reduction was given by Pitman
and Koopman (Koopman, 1936; Pitman, 1936; Darmois, 1935; for generalizations, e.g. to
the discrete case, see Hipp, 1974; Andersen, 1970; Denny, 1967; Fraser, 1963; Barankin &
Maitra, 1963). When the sufficient statistics are the mean and covariance matrix, as above,
the likelihoods turn out to be (truncated) multivariate normal distributions.

In the slightly more complicated case of two or more health conditions and the assumption
of partial exchangeability (2.6), this theorem leads to formula (2.11) with likelihoods Lc

determined by the sufficient statistics that we have chosen for the different health conditions
(Bernardo & Smith, 2000, Sec. 4.6). The prior distribution over the parameters of the like-
lihoods, p(θH,θS| I), is not determined by the theorem, but has to be determined by other
considerations that can again involve symmetry and information theory.

As we mentioned in the introduction, the notion of sufficient statistics can be a helpful
bridge between biophysical considerations and the specification of probabilities. It may
be easier to conceive and understand a connection between biophysical considerations
and some statistics of our measurements, than between biophysical considerations and an
abstract multidimensional distribution function. Once such statistics are selected, they in
turn uniquely select a probability distribution for us. Vice versa, if a statistical model based
on some sufficient statistics proves to be very reliable in its predictions, we may conclude
that its sufficient statistics must have an important biological meaning.

In the remaining study we shall use three statistical models determined by three different
sufficient statistics. Our choice of statistics is unfortunately not biologically motivated, as
such models have yet to be determined for fMRI data. However, they are adequate to
demonstrate the approach and we hope that authors with more experience will pursue this
line of thought and derive better-motivated sufficient statistics.

2.2.4.3 Edgeworth’s “method of translation”: generalized normal models

The assumption of a sufficient statistics makes the integrals in de Finetti’s formulae (2.7)
and (2.8) finite-dimensional, but these integrals and other expressions that depend on them,
like the post-test probabilities, may still lack a closed form and be analytically intractable. In
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this case we could use numerical methods, a computationally costly possibility we consider in
the Discussion, Sec. 2.3.3. In the present work we choose models with closed-form formulae
instead; their swift calculation facilitates the model comparison to be illustrated later.

Our starting point is an analytically tractable model by sufficient statistics that has been
the subject of much study (Gelman et al., 2014, Sec. 3.6; Minka, 2001; Murphy, 2007): it has
a normal likelihood, with mean λ and covariance matrix Λ as parameters, and a normal-
inverse-Wishart prior distribution over these parameters. This parameter prior maintains the
same functional form when updated with training data; this kind of prior is called conjugate
(DeGroot, 2004, Ch. 9; Diaconis & Ylvisaker, 1979). This model is outlined in more detail in
Sec. 2.4.2.

We try to make the normal + normal-inverse-Wishart model more flexible by combining
it with an idea that Edgeworth (1898) called “Method of Translation”, discussed also by
Johnson (1949) and Mead (1965): the transformation of a quantity into a normally distributed
one. That is, instead of considering the connectivity weights f , we consider transformed
quantities l(f), where l is a component-wise monotonic function, and suppose the latter
quantities to be normally distributed. This leads to generalized-normal likelihoods of the
form

N[l(f)|λ,Λ] l′(f) df (2.14)

where N is the normal distribution with mean λ and covariance matrix Λ, and l′ is the
Jacobian determinant of l.

This simple idea has an amazing scope: it allows us to explore a vast range of non-normal
likelihoods – in particular likelihoods defined on bounded domains such as [−1, 1]d – and to
keep the low computational costs of the conjugate prior. In our present problem it has also
an additional convenient feature: in the calculation of the post-test probability, the Jacobian
determinant l′ disappears, as Eq. (2.19) below shows.

These generalized-normal models, which we denote by Ml, are also determined by a choice
of sufficient statistics, analogous to Eq. (2.12): the mean and covariance matrix of the trans-
formed data {l(fi)},

l(f), Cov[l(f)]. (2.15)

In our partially exchangeable case, with formulae (2.11), we need to specify a likelihood Lc for
each health condition c. We assume these two likelihoods LH, LS to be functionally identical
generalized normals, i.e. the function l is the same for the healthy and the schizophrenic case;
but their means and covariance matrices (λH,ΛH) and (λS,ΛS) can be different.

We also need to specify a joint parameter prior for (λH,ΛH;λS,ΛS). To use the analytic
advantage of the conjugate prior, we assume that the distribution for these parameters is a
product of independent distributions:

p(λH,ΛH;λS,ΛS|Ml, I) = p(λH,ΛH|Ml, I)× p(λS,ΛS|Ml, I), (2.16)

each of them being a normal-inverse-Wishart distribution described in Sec. 2.4.2. This
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independence assumption is quite strong and has an important consequence: the likelihood for
a health condition only depends on the data from previous patients having that same health condition.

With the assumptions above, the likelihood for the health condition needed by the clinician
has a closed form for this model (see Sec. 2.4.2). The likelihood for patient 0’s being healthy, in
view of the patient’s measured connectivity weights f , and given the data (fi) from previous
nH healthy patients, is

p(fMRI result f | healthy ∧ prior info) = t
[
l(f)

∣∣ νH − d+ 1, δH,
κH+1

κH (νH−d+1)∆H

] ∏
k

l′(fk),

(2.17)

where t is a multivariate t distribution with νH − d + 1 degrees of freedom, mean δH, and
scale matrix κH+1

κH (νH−d+1)∆H. This distribution has covariance matrix κH+1
κH (νH−d−1)∆H (note the

different denominator from the scale matrix), and approaches a generalized normal for large
νH. The final factor is the Jacobian determinant of l.

The most important feature of this likelihood is the dependence of the coefficients
(κH, δH, νH,∆H) on the data (fi) of the previous nH healthy patients:

κH = κ0 + nH, νH = ν0 + nH,

δH =
κ0 δ0 + nH l(f)

κ0 + nH
, ∆H = ∆0 + nH Cov[l(f)] +

κ0 nH

κ0 + nH

[
l(f)− δ0

][
l(f)− δ0

]⊺
,

(2.18)
where (κ0, δ0, ν0,∆0) are prior coefficients that represent the clinician’s knowledge before
any patients were observed. As the number nH of observed healthy patients increases, the
probability for the transformed data l(f) tends to a normal distribution with mean and
covariance matrix equal to the empirical average and covariance matrix of the transformed
data. The formulae above show that previous data enter only through the sufficient statistics
l(f) and Cov[l(f)].

An analogous formula holds for the likelihood for the patient’s being schizophrenic, with
coefficients (κS, δS, νS,∆S) that depend on the data of previous schizophrenic patients and
some initial coefficients. The function l and the prior coefficients (κ0, δ0, ν0,∆0) could be
different for the healthy and schizophrenic cases, but for simplicity we assume them identical
for both health conditions.

If (p̂H, p̂S) is the pre-test probability distribution for the health condition of patient 0, his
post-test probability to be healthy is
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P(healthy | fMRI result ∧ prior info) =

t
[
l(f)

∣∣ νH − d+ 1, δH,
κH+1

κH (νH−d+1)∆H

]
p̂H

t
[
l(f)

∣∣ νH − d+ 1, δH,
κH+1

κH (νH−d+1)∆H

]
p̂H + t

[
l(f)

∣∣ νS − d+ 1, δS,
κS+1

κS (νS−d+1)∆S

]
p̂S

. (2.19)

Note that the Jacobian determinants l′ do not appear in this formula.

2.2.4.4 Generalized normal models in our study

In the rest of our study we compare three different transformations l of the connectivity
weights f , with one set of prior coefficients (κ0, δ0, ν0,∆0) each:

Logit-normal model: A slightly modified logit transformation

l(fk) := ln
1 + fk
1− fk

, l′(fk) =
2

1− f2
k

, (2.20)

with prior coefficients

κ0 = 1, δ0 = 0, ν0 = d+ 1, ∆0 = (d+ 2)Id. (2.21)

Tangent-normal model: A tangent transformation

l(fk) := tan
πfk
2

, l′(fk) =
π

1 + cosπfk
, (2.22)

with prior coefficients

κ0 = 1, δ0 = 0, ν0 = d+ 1, ∆0 =
d+ 2

4
Id. (2.23)

Normal model: An identity transformation (that is, no transformation at all)

l(fk) := fk, l′(fk) = 1, (2.24)

with prior coefficients

κ0 = 1, δ0 = 0, ν0 = d+ 1, ∆0 = 10Id. (2.25)

For brevity we shall denote l(f) :=
(
l(fi)

)
.
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Figure 2.2: General normalized models. Upper panel: Generalized logit and tangent transformation
functions as defined in the text. Lower panel: Prior distributions for any connectivity weight f
conditional on the three generalized normal models defined in the text

The first two transformations, plotted in the upper panel of Fig. 2.2, map the bounded domain
]−1, 1[ of the connectivity weights into the reals, and thus restrict the generalized-normal
likelihood to meaningful values of the connectivity weights. The last model instead allows for
connectivity weights outside their meaningful bounds. It can be conceived as the model of a
person who has no precise knowledge of what the quantities f are. Since the clinician’s final
predictions concern health conditions given data f , not the data f themselves, this model
can still be meaningfully used. The probabilities for the connectivity weight fi conditional on
the prior coefficients above are shown in the lower panel of Fig. 2.2.

The prior coefficients are chosen by the following criteria: uniform marginal distributions of
the correlations between connectivity weights (leading to ν0 = d+1 as explained before); large
uncertainty in the location parameters (κ0 = 1); symmetry with respect to the origin (δ0 = 0);
a prior distribution for the connectivity as flat as possible (its second derivative vanishes
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at the origin, leading to the values of ∆0 above). In the case of the identity transformation
we have chosen a ∆0 that somewhat concentrates the prior around the true range of the
connectivity weights, [−1, 1].

The numerical values of the main quantities used throughout this study are summarized in
table 2.1.

nH = 55 healthy patients

nS = 49 schizophrenic patients

d = 40 graph parameters

κ0, δ0, ν0,∆0 prior coefficients: see (2.23), (2.25)

Table 2.1: Numerical values in our study

2.2.5 Model comparison and selection

2.2.5.1 Criteria for model comparison

Any two statistical models differ in two main characteristics: their predictive power and their
learning speed. Predictive power is a model’s capacity to give high probability to propositions
that turn out to be true, during and especially after its learning phase (cf. Dawid, 1982b).
Learning speed is how quickly a model reaches unchanging, stable predictive probabilities
as it gets updated with new data; note, however, that a model may also never reach stable
probabilities (see e.g. Bruno, 1964; Berk, 1966); “Alas, this seems like a model of the way
things work in practical inference – as more data comes in, one admits a richer and richer
variety of explanatory hypothesis” (Diaconis, 1988, Sec. 3, p. 113). Thus, our choice of a
model depends on the relative importance we give to these two characteristics.

These two characteristics need not go hand in hand: a model can quickly learn with very
little data but settle on probabilities with poor predictive power; conversely, it can reach
great predictive power but only after a long learning phase with a huge amount of data.
A model can also “unlearn”, i.e. its predictive power initially increases and then decreases
before stabilizing. The latter phenomenon can happen because every model initially makes
its prediction through a mixture of likelihoods – the integral (2.11), in our case the t distri-
bution (2.36) – but as the training continues the mixture is replaced by a single likelihood,
in our case a generalized normal (2.14), as explained in Sec. 2.2.4.3. It may happen that the
mixture of likelihoods has higher predictive power than a single likelihood, and in this case
a decline in predictive power will be observed. A model with such behaviour is obviously
unfit for the clinician’s goal; this also means that the sufficient statistics on which it is based
capture very poorly the differences in connectivity weights between health conditions.

When only a small amount of training data is available, it can be difficult to assess which
of two models has or will have the greater predictive power. The first model can initially



42 2 Inferring health conditions from fMRI-graphs

reach a greater predictive power than the second, but the second model may eventually reach
greater predictive power than the first, with further training data. Models having the same
likelihood, however, have the same final predictive power; their learning speeds depend on
their parameter priors.

In a diagnostic problem like that faced by our clinician, the choice of a model is ultimately
dictated by the predictive power of the post-test probabilities given by the model; but if we
have little training data, the learning speed of the model is also of some importance. Several
quantitative criteria can be conceived to assess these two characteristics:

1.the post-test probabilities the model gives to the correct health conditions for all training
data, i.e. P(c1, c2, . . . );

2.the post-test probabilities the model gives to the correct health conditions in the final phase
of the training only, i.e. P(clast| c1, c2, . . . );

3.the expected utility the model yields for all training data;

4.the expected utility the model yields in the final phase of the training only.

Post-test probabilities (criteria 1, 2) are important for obvious reasons, and utilities (criteria 3,
4) are important because the clinician’s overall problem is one of decision, as emphasized in
the Introduction of this chapter. Consideration of all data (criteria 1, 3) is important if we are
interested in the performance of the model for the whole set of patients; but consideration
of the final data only, conditional on the previous ones (criteria 2, 4), tells us how much the
model has learned (compare with a similar remark in model comparison using Bayes factors
by Berger & Pericchi, 1996).

We must keep in mind that these criteria assess a statistical model not by itself but in
combination with other factors, since they also depend on pre-test probabilities (which can
be influenced by other diagnostic tests) or utilities.

Applied to our models, each of these four criteria gives a very similar picture. We shall
calculate the results for criteria 2 and 4, the latter with two different utility tables. This
calculation can be explained in very intuitive terms:

Imagine that the nH = 55 healthy and nS = 49 schizophrenic patients visit the clinician in
turn, in an unknown order. For each patient, let us further assume that the clinician has
pre-test probabilities (p̂H, p̂S) = (0.5, 0.5), i.e. she is completely uncertain about the patient’s
health condition. The incidence in the population is much lower than 50%, of course, but the
patients presenting themselves for diagnosis are not representative of the full population.

As stated in Sec. 2.2.2, pre-test probabilities represent the clinician’s uncertainty before the
fMRI test is made; they can be based for example on a first diagnosis considering symptoms
and medical history of the patient and of the patient’s family, on psychological evaluations,
and on other diagnostic tests. Here we assume complete uncertainty for demonstration
purposes.
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The clinician acquires the fMRI result f for that patient, and uses the statistical model,
trained with the data from all the patients that previously visited her, to update to a post-
test probability for schizophrenia pS, given by Eq. (2.19); obviously pH = 1 − pS. Now the
clinician must make a decision – say, treat or dismiss – based on the expected utilities of
the decisions available. Each decision has a different utility depending on the patient’s true
health condition, as summarized by a table. We consider two tables: a symmetric one

(symmetric) healthy schizophrenic

dismiss 1 0

treat 0 1

(2.26)

and an asymmetric one

(asymmetric) healthy schizophrenic

dismiss 1 −2

treat −1 2

(2.27)

In order to maximize the expected utility, as explained in Sec. 2.4.3, the clinician dismisses
the patient if pS < 1/2 in the case of the symmetric utility table, and if pS < 1/3 in the case of
the asymmetric one; and treats the patient otherwise. After the clinician’s decision is made,
the patient’s true health condition is revealed and we record the actual utility gained for each
table, and the post-test probability the clinician assigned to the true health condition, or its
logarithm, usually called “negative surprise” (Bartlett, 1952; Good, 1956, 1957a). The health
condition and fMRI data of this patient are used to update the model. The next patient is
received, and so on, until all patients have been examined.

The particular sequence of utilities and log-probabilities recorded in the manner just de-
scribed depends on the exact order by which the 104 patients visit the clinician. We take an
approximate average over all possible 104! ≈ 10166 orders by randomly sampling 520 000 of
them. The values of these averages for the final patient constitute the quantitative criteria 2
and 4.

With the symmetric utility table (2.26), the average utility is also the average number of
schizophrenic patients for which the model yields pS > 1/2. The average utility for the
last patient, when the model has been trained with the rest of the patients, is therefore a
form of leave-one-out cross-validation (Allen, 1974; Stone, 1974; Kotz et al., 2006, vol. 2,
pp. 1454–1458). The asymmetric table (2.27), slightly more realistic, tells us that dismissing
a schizophrenic patient has worse consequences than treating a healthy one, and treating
a schizophrenic patient has better consequences than dismissing a healthy one (McKenzie,
2014; Ho et al., 2000). For this reason the patient is dismissed, more conservatively, only
if pS < 1/3. Note that scaling a utility table by a positive factor or shifting its values by a
constant represent changes in the unit of measure and in the zero of utilities, and therefore
do not affect our relative comparison of the statistical models.
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2.2.5.2 Results for our three models
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Figure 2.3: Averaged sequence of utilities, with utility tables (2.26) and (2.27), and of log-probabilities
for our three models. The standard deviations of the averages are smaller than the markers’ size. The
average values for the first and last patients are exact.

The averaged sequences of utilities and log-probabilities calculated as in Sec. 2.2.5.1 are
shown in Fig. 2.3. The R code for the calculation is publicly available (Porta Mana et al., 2018).
The results, summarized in table 2.2, are qualitatively identical by the two criteria and two
utility tables we chose: the normal model gives the best values for the final patient, followed



45

by the logit-normal model; the tangent-normal model has the worst final predictive power, at
or below chance level.

symmetric utility (2.26) asymmetric utility (2.27) log-probability

normal model 0.80 0.70 −0.29

logit-normal model 0.75 0.66 −0.34

tangent-normal model 0.56 0.03 −0.60

chance 0.50 0.41 −0.69

Table 2.2: Final results for the three models

The plots of Fig. 2.3 illustrate the points made at the beginning of Sec. 2.2.5.1: one model can
initially learn faster than another and yet be overtaken in the later stages of learning; this is
the case for the logit-normal and normal models. The tangent-normal model shows strong
unlearning; this means that a tangent-normal likelihood and its sufficient statistics do not
distinguish well between healthy and schizophrenic conditions. The slight downward bends
at the final stages of the logit-normal and normal models raise the suspicion that they might
also show some unlearning if further training data were supplied.

The trends of the logit-normal and normal models suggest that the learning phase is not
finished: more patients are needed before their predictive probabilities become stable. This is
also evident from the updated marginal distributions of their parameters (λH,ΛH;λS,ΛS),
for example those for the connectivity weight f between the left superior parietal lobule
and left lingual gyrus, shown in Fig. 2.4 for the logit-normal model. The distributions of the
location parameters (λH,λS) have reached the empirical means of the data, but those of the
scale parameters (ΛH,ΛS) are still very far away from the empirical variances. The reason is
that the prior for the scale parameters had a peak at a very large value of Λ ≈ 20. The 55 data
for healthy patients and 49 for schizophrenic ones have shifted this peak to ΛH = 1.3 and
ΛS = 1.5, but more data are needed to shift these peaks to even smaller values – provided
that in the meantime the empirical values do not change too much as new data are gathered.

The peak at high values of Λ is a known inconvenient feature of the normal-inverse-Wishart
conjugate prior, related to the correlation between correlation and variance components of Λ
characteristic of this prior (e.g. Barnard et al., 2000).

2.2.5.3 Contrast with other model-comparison criteria

Common Bayesian model-comparison criteria are based on the joint probability that the
model gives to training data; especially its logarithm, called “weight of evidence” or “mar-
ginal log-likelihood”, or the ratio of such logarithms, called Bayes factors (Jeffreys, 2003,
Chs. V, VI, A; Good, 1950; MacKay, 1992a; Kass & Raftery, 1995). The simple reason is Bayes’
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Figure 2.4: Updated distributions of the logit-normal model for the location parameters (λH,λS)
(left), scale parameters (ΛH,ΛS) (right), and connectivity weights fH, fS (bottom, superposed on the
empirical distributions) for the connectivity between left superior parietal lobule and left lingual
gyrus, corresponding to the bottom left panel of Fig. 2.1. The vertical lines in the first two plots
indicate the corresponding empirical statistics from the data.

theorem:

P(model | data ∧ prior info) ∝ P(data | model ∧ prior info)×P(model | prior info), (2.28)

the latter probability usually assumed the same for all models (but see Porta Mana, 2017). A
higher weight of evidence means that the model is more probable.

In our study, however, we have two kinds of data: health conditions and fMRI results. Since
the likelihood for the health condition, used by the clinician to arrive at a post-test probability,
gives the probability for the fMRI results {fi}, it seems intuitive to calculate the weights of
evidence of our models based on these data. The result is the opposite of what we obtain
with the averaged-utility criterion or any of other three mentioned above. We obtain:

ln p(fMRI results | logit-normal model ∧ health conditions) = −1913,
ln p(fMRI results | tangent-normal model ∧ health conditions) = −1858,
ln p(fMRI results | normal model ∧ health conditions) = −2488,

(2.29)

which gives the normal model a much smaller probability than the other two, and the
tangent-normal model the highest.
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This discrepancy with the averaged-utility criterion is not completely surprising, though.
Imagine a disease that leads to no differences at all between the fMRI results of patients with
the disease and those of healthy controls. If we found a statistical model that predicted the
fMRI results with certainty, this model would thus have a the highest weight of evidence
(zero), and yet its final average utility would be at chance level, since it could not help us
at all in telling healthy from diseased patients. For our problem the right comparison and
selection criterion is the utility or one of the other three criteria previously listed.

2.2.5.4 Final assessment of models

The average-utility criterion clearly excludes the tangent-normal model, which even shows a
rapid unlearning. The logit-normal and normal models have almost similar performances, at
around 75–80% of final patients correctly treated. We can also plot the sequence of utilities
averaged over healthy and schizophrenic patients separately, as in Fig. 2.5, which gives us an
idea of the ratio between true and false negatives, and true and false positives. Both models
show around 35% false positives (dismissed schizophrenic patients), with the normal model
giving slightly higher final rates of true negatives, 93%, and true positives, 65%, than the
normal, 85% and 63%.
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Figure 2.5: Sequence utilities averaged over healthy (left) and schizophrenic (right) patients separately,
for the logit-normal and normal models
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However, we emphasize that the features used as inputs to the model were selected using a
very simple heuristic (maximum difference in means between the two groups, see Sec. 2.2.3),
and the statistical model was selected for its computational properties rather than its fit to
the distributions of connection weights derived from fMRI data. This notwithstanding, we
believe that with further training, the logit-normal model could reach a higher predictive
power. The reason is that some empirical distributions of connectivity weights, like the one
for schizophrenic patients shown in red in Fig. 2.4, seem to be bimodal; and the logit-normal
likelihood, unlike the normal one, is capable of bimodality, thus fitting these distributions
better.

Our assessment, however, is just an illustrative example for the general method discussed in
this work, and we are not earnestly proposing the logit-normal model (nor any other specific
model) as the optimal one to use in the problem of diagnosing schizophrenia. We note that
any model assessment and selection using the average-utility metric depends on several
important quantities and assumptions:

A.the pre-test probabilities given by the clinician; we assumed these to be (0.5, 0.5);

B.the clinician’s range of decisions; we assumed it to be simply “treat or dismiss”, but it could
comprise several different kinds of treatments;

C.the utilities of the clinician’s decisions; we assumed these to be as in formula (2.37);

D.the ratio between the numbers of healthy and schizophrenic training data; 55/49 = 1.12 in
our case;

E.the clinician diagnoses one patient at a time.

For a proper model assessment we should therefore investigate and consider more realistic
rates of healthy vs schizophrenic cases that visit a particular clinician, in order to have better-
informed pre-test probabilities; and we should consider more realistic decisions available to
the clinician, together with realistically quantified utilities.

Assumption E. deserves some explanation as it may mistakenly appear that it doesn’t matter
whether patients visit the clinician simultaneously or one at a time. Suppose two patients,
Tom and Joe, visit the clinician together, and the clinician obtains fMRI data for both, fT and
fJ. The joint post-test probability for their health conditions cT and cJ is different from the
one obtained first calculating Joe’s one, say, and then Tom’s using Joe’s results:

p(cT, cJ|fT,fJ, D,Ml) ̸= p(cT|fT, cJ,fJ, D,Ml)× p(cJ|fJ, D,Ml). (2.30)

This inequality can be easily verified by applying the probability product rule to the left side,
and can be understood as follows. Suppose the clinician first wants to calculate the likelihood
for Joe’s being healthy. If Tom is schizophrenic then his fMRI result is unimportant for Joe’s
likelihood, owing to our assumption of independent priors (2.16). But if Tom is healthy, then
his fMRI result, which is known to the clinician, should lead to an updated model for Joe’s
likelihood. The likelihood for Joe’s being healthy is therefore a mixture of these two possible
likelihoods, with weights proportional to the post-test probability for Tom’s health condition.
Thus, Joe’s likelihood is affected by Tom’s fMRI result even if Joe’s is calculated first and
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Tom’s health condition is not yet known. More generally, if several patients visit the clinician
simultaneously, she should order diagnostic fMRI tests for all of them at once and calculate a
joint post-test probability for them, in order to make the best-informed prediction for each.

2.3 Discussion

2.3.1 Summary

The diagnosis of a medical condition is a complex process that takes in a variety of judgements
and evidence from the clinician and from any diagnostic tests available to her. Bayesian
probability theory has found wider acceptance in medicine because it can consistently com-
bine and frame such judgements and evidence (Goodman, 1999; Davidoff, 1999; Greenland,
1998). Formulae (2.1)–(2.3) show the basic scheme of how the clinicians’ judgements and the
results of diagnostic tests are combined (Sox et al., 2013). The role of a diagnostic test is not
simply to give a dichotomic answer, e.g. healthy/ill, but a likelihood for each health condition,
to be combined into this scheme together with the likelihoods from other tests. The final
probability obtained from these likelihoods is finally used by the clinician to decide upon a
course of action, e.g. dismiss/treat (Sec. 2.4.3).

The values of likelihoods from such tests need to be determined from a set of training set
of data for each health condition. In this work we have discussed how to determine the
likelihoods when the diagnostic test and training set consist of fMRI data, considering for
concreteness the case of schizophrenia as the disease in question, and by using real fMRI data
from healthy and schizophrenic patients (Sec. 2.2.1). We derived them step by step from first
principles through a sequence of assumptions:

(a)Partial exchangeability with respect to the health conditions, explained in Sec. 2.2.2. We
believe this assumption to be very natural in medical diagnostics. By itself it already leads to
a specific expression for the likelihood, Eq. (2.8), although this expression is very difficult to
compute.

(b)Sufficiency of an empirical statistics of a reduced set of fMRI data (Secs. 2.2.3–2.2.4). We
believe such kind of assumption to be sound and at least approximately true when neurolo-
gically motivated, and moreover it provides a bridge between biophysical considerations and
the specification of probabilities. It leads to a likelihood, Eq. (2.11), amenable to numerical or
analytic computation.

(c)Prior knowledge of the empirical statistics for the different health conditions (Sec. 2.2.4.4).
An assumption of this kind is always necessary, especially with small training data sets; but
it affects our inferences less and less as our training data accumulate.

In our study, for (b) we specifically assumed the sufficiency of the first and second moments
of some functions (Sec. 2.2.4) of the functional-connectivity weights obtained from the fMRI
data (Sec. 2.2.3). Our focus on connectivities was neurologically motivated, but our choice of
first and second moments of particular functions was made for mathematical simplicity, in
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order to illustrate the method. Our choice of roughly flat, conjugate priors for assumption (c)
was also made for the sake of mathematical simplicity and illustration (Sec. 2.2.4.4).

Notwithstanding our simple, mainly illustrative choices, we obtained good diagnostic per-
formances, briefly discussed in the next section. To assess these performances and the relative
predictive power of different choices in assumption (b) above, we presented several criteria,
based on decision theory (Sec. 2.2.5). These criteria also help in understanding whether
the training of the likelihoods has stabilized (Sec. 2.2.5). We observed that in this kind of
study decision-theoretical criteria can yield results in seeming contrast with Bayesian model-
comparison criteria, like weights of evidence and Bayes factors (Sec. 2.2.5.3); but this contrast
is understandable and is not a sign of inconsistency.

We emphasize that the analysis and conclusions presented here are just illustrations of the
general method, and are not meant to be used for real diagnoses: as explained in Secs. 2.2.4.2
and 2.2.5.4, for a real application we would first need to investigate better-informed sufficient
statistics, realistic decisions available to the clinician, the latter’s utilities, and realistic pre-test
probabilities. In this study we used simple default values for illustrative purposes only.

2.3.2 Comparison with other studies and methods

In this study we used a rather naive approach, explained in Sec. 2.2.3, to select a subset of
brain connections for our analysis. That approach can be criticized in two different ways.
First, it ignores the fact that if distributions are narrow, the means can be close together
without much overlap, and that such distributions are likely to be more informative for the
purposes of discrimination. This could be improved, for example, by taking the minimal area
of the distributions’ overlap (dark red area in Fig. 2.1) instead. Second, we did not restrict our
search for suitable connections and associated brain areas to the areas that are known to be
part of resting-state networks identified in previous studies, like the default mode network.
Our lack of specificity, though, was motivated by previous studies which have demonstrated
that functional connectivity can be also measured in other task-related networks, induced by
spontaneous activity (He et al., 2009), and that in resting state different activity patterns can
appear in schizophrenic patients, owing e.g. to hallucinations during the scan (e.g. Shergill
et al., 2000).

Despite our simplified and possibly unrealistic choices of connectivity weights, sufficient stat-
istics, parameter priors, pre-test probabilities, and utility functions, we obtained a diagnostic
performance of 80%, measured by leave-one-out cross-validation (Sec. 2.2.5), comparable to
classification results based on fMRI data reported in previous studies (e.g., Venkataraman
et al., 2012, 18 healthy + 18 schizophrenic patients; Çetin et al., 2016, 45 + 46 patients; Demirci
et al., 2008, 36 + 34 patients ).

Our results also compare with classification results that we achieved using machine-learning
methods. Cross-validation tests using support-vector machines (using 80% of the data for
training and 20% for testing in a randomized iterative way) also yielded around 80% of
correct diagnoses (data not shown).
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But, as explained in the Introduction of this chapter (points I., II.), methods like these, which
simply classify or are deterministic, do not fit the clinician’s decision-theoretical problem:
they cannot be combined with other diagnostic tests and do not fit a general decision-theoretic
approach – cf. Secs. 2.2.5.1, 2.4.3. Most machine-learning methods (Bishop, 2006; Murphy,
2012) are thus ruled out.

There is no real contrast, however, between machine-learning methods and the method
presented here: machine-learning algorithms can be interpreted as convenient, fast approxim-
ations of Bayesian methods (see e.g. the explicative image in Huszár, 2017), often combined
with default utility functions and decision rules (Murphy, 2012; MacKay, 2003, 1992a,e,d,c,b).
A machine-learning classification algorithm that gives a good performance can suggest good
likelihoods or parameter priors to be used in a statistical model. For example, the simplest
version of a support-vector machine (Bishop, 2006, Ch. 7; Murphy, 2012, Sec. 14.5) can be
interpreted as a model where the likelihood LH(f |θH) for one health condition is very large in
a half of the dataspace f ∈ [−1, 1]d and zero in the rest, the hyperplane separating these half-
spaces being determined by the parameter θH. The likelihood LS(f |θS) for the other health
condition is likewise large or zero in two half-spaces separated by a hyperplane determined
by θS; see Eqs. (2.11) in Sec. 2.2.4.1. In this model the parameter prior p(θH,θS|M, I) correlates
the two parameters (θH,θS) in such a way that the two hyperplanes coincide and the two
likelihoods have support on opposite sides. As the model is trained and the parameter prior
is updated, Eq. (2.11b), the hyperplane moves in space in a way to maximize the product of
the likelihoods. This corresponds to the search of an optimal separation hyperplane by the
support-vector machine.

2.3.3 Possible improvements

Besides using more realistic pre-test probabilities, and utility values, the method presented
here could be improved in several other respects, especially with regard to assumptions (b)
and (c) summarized in Sec. 2.3.1.

In point (b) we assumed that particular connectivity weights are sufficient to distinguish
among schizophrenic and healthy patients. These connectivities were calculated as in
Secs. 2.2.3 and 2.4.1. More sophisticated choices of Regions Of Interests and functional-
connectivity measures (Marrelec & Fransson, 2011; Smith et al., 2011; Wang et al., 2014;
Gheiratmand et al., 2017; Demirci et al., 2008) or even integration of functional and structural
imaging (Michael et al., 2010) could obviously lead to an increased predictive power. A
different choice of sufficient statistics could also improve the performance. With increased
computational power it would even be possible to use the full set of connectivities rather
than sufficient statistics thereof – so-called “nonparametric” models (cf. Zhang et al., 2014,
2016; Nielsen et al., 2016; Kook et al., 2017).

Regarding assumption (c), in Sec. 2.2.4.3 we mentioned that parametric models may lead to
probabilities that lack a closed form and are analytically intractable. The models we chose,
with conjugate prior, have the advantage of having closed-form formulae, but they also
restrict our choice of sufficient statistics and parameter priors. Higher predictive power
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could be achieved by using other kinds of sufficient statistics, leading to likelihoods that are
not generalized normals, or by using non-conjugate priors, e.g. treating means, correlations,
and variances independently, as discussed by Barnard et al. (2000). In this case numerical
methods are needed, such as Markov-Chain Monte Carlo sampling and integration (MacKay,
2003, Ch. IV; Murphy, 2012, Chs. 23–24). It must be kept in mind, though, that numerical
methods can be computationally vastly more expensive than analytic ones. In preliminary
studies that led to our present work we considered a couple of statistical models that require
Monte Carlo sampling: a truncated normal and a product of beta distributions among them.
The calculation of the relevant integrals for these models has vastly higher time costs than for
the closed-form models presented here. For example, calculation of a posterior parameter
distribution for the truncated-normal model required 17 h on a computer cluster; whereas
the corresponding calculation for the models in the present work takes a fraction of a second
on a laptop. To assess and select a model for our clinician to use, such integrals need to be
computed over and over, as we explained in Sec. 2.2.5.1. The assessment of statistical models
that require Monte Carlo methods can therefore lead to months of computation. Further
explorations are needed in this direction.

The comparison with support-vector machines sketched at the end of the previous section
shows one important assumption of our statistical models: the independence of the prior
parameter distributions for the two health conditions: p(θH,θS| I) = p(θH| I) × p(θS| I),
see Eq. (2.16). Statistical models of which support-vector machines are approximations
clearly cannot make this assumption. The performance of the model might improve by
using a non-independent joint prior distribution, which allows training data for one health
condition to influence the parameter distribution for the other. In the case of the generalized-
normal models we examined, this can be achieved – whilst preserving their computational
convenience – by taking a weighted average of several values of prior coefficients (2.33). This
is known as a hierarchical model (Bernardo & Smith, 2000, Sec. 4.6.5).

The possibilities for improvement listed in these last paragraphs suggest that the method we
have presented here, hinging on first principles, has great potential for applications and for
development in different directions; moreover this is not to the exclusion of other methods,
but assimilating their principles and advantages.

2.4 Methods

2.4.1 Data preprocessing

Preprocessing of the rfMRI images is carried out using the FMRIB Software Library tools (FSL,
v5.08: Jenkinson et al., 2012; Smith et al., 2005) and consists of the following steps: removal of
the first ten image volumes, leaving the remaining 130 volumes for further data processing;
removing non-brain tissue (BET: Smith, 2002b); motion correction (MCFLIRT: Jenkinson et al.,
2002); spatial smoothing with a 6 mm full width at half maximum normal kernel; temporal
low-pass filtering with a cut-off frequency of 0.009 Hz; white matter and cerebrospinal fluid
regression (FSL regfilt, MELODIC).
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For each subject we first linearly register the rfMRI image first to the structural, skull-
removed image (image segmentation for skull removing with SPM8, Wellcome Department of
Cognitive Neurology, London, UKFSL; linear registration with FSL/FLIRT: Jenkinson & Smith
2001; Jenkinson et al. 2002) and then, through a non-linear mapping, to the MNI standard
brain (non-linear registration with Advanced Normalization Tools (ANTS: Avants et al.,
2011); MNI 152 standard brain, non-linear 6th generation (Grabner et al., 2006). Regions of
interest (ROIs) of the resulting functional image in standard space are extracted such that
they match the 94 regions identified by the Oxford lateral cortical atlas with a probability
above 50% (Desikan et al., 2006). The temporal mean signals across the voxels in each ROI
are used to calculate the functional connectivity measured based on the Pearson correlation
coefficient.

2.4.2 The normal model with conjugate prior

This statistical model, denoted in this section by M , is amply discussed in the literature
(Gelman et al., 2014, Sec. 3.6; Minka, 2001; Murphy, 2007); here we only give a summary.

Its likelihood is a normal distribution

L(f |λ,Λ,M, I) = N[l(f)|λ,Λ] l′(f) (2.31)

with mean λ and covariance matrix Λ.

The prior distribution for the parameters (λ,Λ) is a normal-inverse-Wishart distribution, i.e.
the product of a normal distribution for λ and an inverse-Wishart matrix distribution (Gupta
& Nagar, 2000, Sec. 3.4; Tiao & Zellner, 1964; Bernardo & Smith, 2000, Sec. 3.2.5) for Λ:

p(λ,Λ|κ0, δ0, ν0,∆0,Ml, I) = p(λ|Λ, κ0, δ0,Ml, I)× p(Λ| ν0,∆0,Ml, I), (2.32)

with
p(λ|Λ, κ0, δ0,Ml, I) = N(λ| δ0,Λ/κ0),

p(Λ| ν0,∆0,Ml, I) = Wishart-1(Λ| ν0,∆0) ∝ det(Λ)−
ν0+d+1

2 exp
(
−1

2 tr∆0Λ
−1
)
.

(2.33)

It should be noted how Λ appears as parameter in the distribution for λ, so their distributions
are not independent. The composite distribution depends on two scalar, one vector, and one
matrix coefficients (κ0, δ0, ν0,∆0).

This prior parameter distribution retains the same form when it is conditioned on the data
(fi) of n patients, becoming a posterior parameter distribution with updated coefficients
(κ, δ, ν,∆) depending on the prior ones and on the sufficient statistics:

κ = κ0 + n, ν = ν0 + n,

δ =
κ0 δ0 + nf

κ0 + n
, ∆ = ∆0 + n Cov(f) +

κ0 n

κ0 + n

(
f − δ0

)(
f − δ0

)⊺
.

(2.34)
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The main features of the normal-inverse-Wishart distribution for (λ,Λ) are these:

λ: mean & mode = δ, covariances =
1

κ (ν − d− 1)
∆;

Λ:


mean =

1

ν − d− 1
∆, mode =

1

ν + d+ 2
∆,

diagonal variances =
2

(ν − d− 3)(ν − d− 1)2
(∆)kk

2.

(2.35)

These formulae above say that the uncertainty in the location parameter λ decreases as κ and
ν increase for fixed ∆, and the uncertainty in the matrix scale parameter Λ decreases with
increasing ν. When ν = d+ 1 the marginal distributions for the correlations of λ are uniform
(Gelman et al., 2014, Sec. 3.6; Barnard et al., 2000, Sec. 2.2). Because of these properties, a
“vaguely informative” parameter distribution should have small κ0 and ν0 (Minka, 2001;
Murphy, 2007).

When the likelihood (2.31) and the parameter prior (2.32), updated with (2.34), are multi-
plied and the parameters are integrated, the resulting distribution for f is a multivariate
t distribution (Kotz & Nadarajah, 2004; Minka, 2001; Murphy, 2007)

p[f | (fi), κ0, δ0, ν0,∆0,Ml, I] ≡ p(f |κ, δ, ν,∆,Ml, I)

= t
[
l(f)

∣∣ νH − d+ 1, δH,
κH+1

κH (νH−d+1)∆H

] ∏
k

l′(fk)
(2.36)

with ν − d+ 1 degrees of freedom, mean δ, scale matrix κ+1
κ (ν−d+1)∆, and covariance matrix

κ+1
κ (ν−d−1)∆.

2.4.3 Decision theory and utility

Once we have the post-test probabilities (pH, pS) for the possible health conditions of a patient
given the fMRI data, there remains to decide upon a course of action. This is the domain of
decision theory (Raiffa & Schlaifer, 2000; Jaynes, 2003, Chs. 13, 14; Sox et al., 2013, Chs. 6, 7).

Suppose we have only two courses of action: treat T or dismiss D. A decision-theoretical
analysis needs, besides the probabilities for the health conditions, also the utilities (or costs)
of choosing an action given the patient’s true health condition. For example, treatment of a
healthy patient could harm the latter, or it could be innocuous. With two courses of action
and two health conditions we have four utilities udecision|condition:

healthy schizophrenic

dismiss uD|H uD|S
treat uT|H uT|S

uD|H > uT|H,

uT|S > uD|S.

(2.37)

Typically uD|H > uT|H and uT|S > uD|S, and uD|H, uT|S are positive and uT|H, uD|S negative if we
appropriately shift the zero of our measurement units.
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The expected utilities for dismissal and treatment are therefore

E(uD) = uD|H pH + uD|S pS, E(uT) = uT|H pH + uT|S pS. (2.38)

Decision theory says the clinician ought to chose the action having maximum expected utility.
For example, she dismisses the patient if E(uD) > E(uT), that is if

pS <
uD|H − uT|H

uD|H − uT|H + uT|S − uD|S
. (2.39)
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Chapter 3

On the extraction and analysis of
graphs from resting-state fMRI to
support a correct and robust diagnostic
tool for Alzheimer’s disease

The diagnosis of Alzheimer’s disease (AD), especially in the early stage, is still not very
reliable and the development of new diagnosis tools is desirable. A diagnosis based on fMRI
is a suitable candidate, since fMRI is non-invasive, readily available, and indirectly measures
synaptic dysfunction, which can be observed even at the earliest stages of AD. However,
previous attempts to analyze graph properties of resting state fMRI data are contradictory,
presumably caused by methodological differences in graph construction. This comprises
two steps: clustering the voxels of the functional image to define the nodes of the graph,
and calculating the graph’s edge weights based on a functional connectivity measure of
the average cluster activities. A variety of methods are available for each step, but the
robustness of results to method choice, and the suitability of the methods to support a
diagnostic tool, are largely unknown. To address this issue, we employ a range of commonly
and rarely used clustering and edge definition methods and analyze their graph theoretic
measures (graph weight, shortest path length, clustering coefficient, and weighted degree
distribution and modularity) on a small data set of 26 healthy controls, 16 mild cognitive
impairment and 14 Alzheimer’s disease. We examine the results with respect to statistical
significance of the mean difference in graph properties, the sensitivity of the results to model
and parameter choices, and relative diagnostic power based on both a statistical model
and support vector machines. We find that different combinations of graph construction
techniques yield contradicting, but statistically significant, relations of graph properties
between health conditions, explaining the discrepancy across previous studies, but casting
doubt on such analyses as a method to gain insight into disease effects. The production
of significant differences in mean graph properties turns out not to be a good predictor of
future diagnostic capacity. Highest predictive power, expressed by largest negative surprise
values, are achieved for both atlas-driven and data-driven clustering (Ward clustering), as
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long as graphs are small and clusters large, in combination with edge definitions based on
correlations and mutual information transfer.

3.1 Introduction

The two major challenges in Alzheimer disease (AD) research consist in firstly, finding an
effective treatment that at least slows down the disease progress, and secondly, developing
diagnostic tools that can not only detect the disease at the earliest stage, during which no
symptoms related to cognitive deficits are apparent (Sperling et al., 2011), but also provide
information into the progression of the disease. For the latter challenge it is particular
desirable that the tools can be deployed within the existing medical infrastructure (i.e. not
requiring specialized machinery or lab procedures), such that it is feasible to scan a wide
range of the elderly population. Diagnosis procedures currently in use include psychological
tests, detection of abnormal concentrations of disease specific biomarkers (Amyloid-β , Tau
proteins) in cerebrospinal fluid and analysis of structural magnetic resonance images (MRI).

Although abnormalities of Amyloid-β concentrations are proposed to be the earliest disease
indicator, they are not very reliable in disease prognosis. Moreover, the changes in Amyloid-β
concentrations show the strongest increase in the preclinical phase, and are thus uninform-
ative with respect to the further progression of the disease. Tau pathology, which probably
spreads along functional networks (Hoenig et al., 2018) better predicts cognitive deficits
and progression of the disease (Nelson et al., 2012). However, the two methods measuring
Amyloid-β and Tau concentrations, lumbar puncture and PET are invasive (Sperling et al.,
2011; Schroeter et al., 2009).

Possibly, synaptic dysfunction, another disease marker, corresponds to the onset of AD even
before Amyloid-β pathology starts. Additionally, as it gradually worsens throughout the
course of the disease, it could serve as diagnostic marker for all stages of AD. Dysfunction
of synapses can be indirectly measured via invasive FDG-PET and non-invasive functional
MRI, which might directly be combined with structural MRI scans (Sperling et al., 2011;
Schroeter et al., 2009). However, a diagnostic framework based on functional MRI has yet to
be established.

Although many fMRI studies have investigated changes of functional activity in AD (for
a review see Dennis & Thompson, 2014), there is no consensus about which information
should be used. Such studies typically examine disrupted cortical connectivity, either locally,
considering single brain areas (e.g. Dillen et al., 2017) and their embedding in the network, or
globally, analyzing the entire constructed brain graph and the statistics of its graph properties
(Gits, 2016).

We argue that in order to develop a robust diagnosis tool applicable to all disease stages, it is
preferable to consider global graph properties for the following reasons. First, global graph
properties seem to be more robust across sessions; consequently, changes in these properties
over time are more likely to reflect disease progression than statistical fluctuations (Wang
et al., 2014; Telesford et al., 2010). Second, not all disease progression follows a stereotypical
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pattern. Whereas structural evidence of AD is typically found predominantly in entorhinal
cortex and hippocampus, in atypical cases atrophy occurs primarily in other areas, such as
posterior cortex (Johnson et al., 2012). These atypical cases might be better captured by global
properties, since they make use of the entire information provided by the brain. Furthermore,
analyzing the statistics of graph properties rather than comparing the properties of single
nodes allows the use of data-driven brain clustering, which results in different numbers and
locations of brain clusters for each individual.

However, it is challenging to investigate the informativeness of global graph properties due
to the innumerable methods of graph construction methods, comprising both the clustering
of the voxels to define the graph’s nodes, and the definition of functional connectivity to
define its edges. Across the range of previous studies investigating graph properties in AD, a
wide variety of methodological approaches for graph construction and properties assessment
have been applied and are probably a major source of contradictory observations, such as the
comparative length of the shortest path in AD subjects with respect to control being reported
in two recent studies as both shorter (Zhao et al., 2012) and longer (Sanz-Arigita et al., 2010).

It is a further challenge to identify an appropriate evaluation method that not only enables
us to compare the different graph construction methods, but also permits the results to be
combined with other information indicating the probability of a particular health condition.
This means that pure classifiers, although they achieve high discrimination performance
(Khazaee et al., 2015, 2017) do not meet these requirements because they return a group
membership (’AD’, ’MCI’ or ’control’) and not a probability that can be combined with the
results of other diagnostic tests (e.g. derived from Amyloid-β concentration measures) or
individual patient risk factors (Porta Mana et al., 2018).

In this article, we address these issues by presenting a methodology for determining which
combination of techniques to extract and analyze graphs from resting state functional mag-
netic resonance imaging (fMRI) data provides the best basis for a diagnosis tool, assuming
a given initial data set. Here, we apply our methodology to a small data set consistig of
26 control (C) elderly patients without any indication of any form of dementia or other
cognitive problems, 16 mild cognitive impaired (MCI) subjects and 14 patients suffering
from Alzheimer disease (AD) (Dillen et al., 2017). We evaluate the combinations of graph
construction and analysis methods using a statistical model that partly compensates for
the small data set and also yields probabilities rather than classifications, thus permitting
the results to be combined with other probabilities, as discussed above. In addition, we
evaluate the graph construction techniques with respect to robustness of results to method
configuration parameters and similarity of results across different techniques.

Note that our aim here is not to demonstrate superior classification (for which our data set is
in any case too small) or to propose a particular combination of techniques as optimal (as this
may vary between settings), but primarily to provide a principled way for determining an
appropriate combination of techniques for a given data set, and secondarily to highlight the
sensitivity of graph theoretical analysis to the details of graph construction.

To understand how different methods for constructing graphs affect the resultant graph
properties, and thus the ability to distinguish between patient groups, we evaluate a range



60 3 Extraction and analysis of graphs from rfMRI as diagnostic tool for AD

Figure 3.1: Overview of intermediate steps for graph construction, properties derivations and stat-
istical analysis. Each picture illustrates the result of a processing step starting from the preprocessed
function image (very left), which is clustered into regions, used as the nodes of the graph (second im-
age). The averaged fMRI activity of each region is then used to calculate the edges of the graph (third
image) and based on the calculated graph properties (fourth image) of all graphs, the statical analysis
estimates the probability density functions (pdf) of the three health conditions (last image) that are
necessary for the evaluation of diagnostic performance based on the negative surprise measure. For
the first three steps of the pipeline we investigate a range of different methods, see Secs. 3.2.1, 3.4.3,
3.4.4 and 3.4.5 for details.

of standard and non-standard methods to construct the graphs. The first step in graph
construction consists in clustering adjacent voxels, such that the activity of the resulting
region can be expressed by the average of time varying signal of the selected voxels (see
Fig. 3.1). The decision as to which voxels form a cluster is often based on atlases established
for a standard brain with predefined brain regions. In order to map this standard atlas to
the functional image or vice versa, registration algorithms are used. Problematic in this
step, especially for subjects potentially suffering from neurodegenerative diseases, is the
inhomogeneous shrinkage of the brain, which hampers a correct registration (Liu et al., 2017).
In addition, individual brain regions derived from standard brain templates are likely to
execute several cognitive processes in parallel, such that averaging the activity across the
voxels of these functional inhomogeneous regions is not justified (Marrelec & Fransson, 2011).
We therefore also include activity driven algorithms, namely region growing and selection
(RGS, Lu et al., (2003)) and Ward clustering, into our evaluation.

In the second step in graph construction, functional connectivity values are calculated based
on the averaged signal of the regions. In most studies this is carried out based on the Pearson
correlation coefficient, restricting the functional connectivity to non-directional connections.
Here we cover a broader range of possible measures in the time domain: linear, non-linear
model-free and model-based (Wang et al., 2014) that depending on their exact realization
result in directed or undirected graphs.

We then calculate a variety of graph measures on the single nodes (weighted degree, cluster
coefficient, closeness centrality), edges (weights, shortest path) and the entire graph (modu-
larity). As several of these measures are only well-defined for binary graphs, many studies
binarize the weighted graphs obtained from the previous steps into binary graphs, by setting
weights above an arbitrary threshold wmin to 1, and those below it to 0 (e.g. Supekar et al.,
(2008)). The drawback here is that there is no validation for an optimal threshold, and in-
formation that might be relevant in AD may be lost. To investigate this problem, we analyze
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the dependence of graph theoretic measures on wmin, setting the weights below it to 0 but
leaving the values above unchanged.

To assess the suitability of combinations of graph construction and analysis methods to
inform a diagnosis tool, we set up a statistical analysis based on a training data set of known
health conditions (healthy controls, mild cognitive impairment, and Alzheimer disease),
see Sec. 3.4.6. The diagnostic usefulness of the analysis pipeline is then defined as the
performance of the model against a labeled test data set. A model with good performance
can ultimately be employed in a clinical setting, to assess the probability that a patient has
one of the three health conditions. For a more complete discussion of the development and
use of the statistical model, see (Porta Mana et al., 2018).

In this study we use a statistical model constructed from the following working hypothesis:
the empirical means and correlations of graph data from previous patients with a given health
condition are sufficient to predict the graph data of a new patient with that same health
condition. This is a partially exchangeable model by sufficiency, and the resulting likelihood is
a multivariate t distribution (Porta Mana et al., 2018), described in Sec. 3.4.6. To assess which
graph constructions have the greatest predictive power, we calculate their log-probabilities
or negative surprises (Bartlett, 1952; Good, 1956, 1957a). To validate this approach, we also
compare the results of the negative suprise with the classification performance achieved by a
support-vector machine (SVM).

Our results show that clustering resulting in small graphs with large clusters (Ward and
atlas-based clustering) achieve highest negative surprises (and best SVM classification per-
formance). Similarly, amongst the edge definition techniques, model-free methods (linear
and non-linear correlations, mutually information transfer) obtain the highest negative sur-
prise values. Conversely, calculating the graph’s edge weights according to transfer entropy
(model based) achieves limited diagnostic power but the ordering of the individuals based
on their average graph properties is very robust towards the applied clustering method and
choice of algorithm specific parameters. We further demonstrate that significant differences
in the means of graph properties are very sensitive to method choice and to parameterization
choices for a given method. Therefore such results, if taken at face value and not validated by
alternate methods, may well be artefactual and not provide insight into the effects of a disease.
Interestingly, the presence of significant differences in mean values of graph properties is not
a reliable predictor of later diagnostic performance. In particular, atlas clustering results in
only few significant differences but reaches the highest values for negative surprises and the
best classification scores for the SVM. Finally, we show that the effect of setting a threshold
on the graphs edge weights has only marginal effect on the negative surprise as long as
threshold values are small.
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3.2 Results

3.2.1 Graph construction

3.2.1.1 Vertex definition by means of clustering

A universal property of the clustering algorithms examined here is the existence of a control
parameter that regulates how the clusters are formed, and thus preserves a certain feature (or
features) of the clusters. In atlas-based clustering, the preserved features are the number of
clusters and the number of voxels per cluster. In Ward clustering, the number of resulting
clusters is fixed, which we violate to a small extent by deleting very small clusters. In RGS,
the homogeneity of each cluster is preserved. The freedom that each of the algorithms leaves
to the non-regulated features can either be considered as drawback of the algorithm, because
it makes graphs less easily comparable, or as an additional feature that might even improve
the diagnosis performance.

Fig.3.2 shows the number of nodes/clusters, the average number of voxels per node and
the average heterogeneity of the nodes for two configurations of the RGS algorithm, four
configurations of the Ward algorithm, and the atlas algorithm (see Sec. 3.4.3 and Table 3.3).
Most strikingly, the node properties vary far more with respect to the clustering method
chosen than with respect to the health condition.

By construction, the number of nodes for atlas clustering are the same for all individuals,
and are the smallest over all the clustering methods (top panel). In Ward clustering the
number of clusters is an algorithmic specific parameter; it is not constant in Fig.3.2 because
we additionally include a parameter enforcing a minimum cluster size. Thus, the number
of nodes for Ward clustering decrease as the minimum number of voxels per cluster p
increases from 10 for ’ward1’ to 25 in ’ward4’. In RGS clustering we do not have such
algorithmic specific restrictions and the number of clusters is defined by the voxel dynamics.
A consequence of this is that the number of clusters per graph are more widely spread.

The average number of voxels per cluster, shown in the middle panel of Fig.3.2, is unsurpris-
ingly negatively correlated with the number of clusters. For purposes of comparison, the
number of voxels for atlas clustering was first calculated for the standard space and then
downscaled in proportion to the relation of the total number of voxels present in functional
space to those in standard space. An inverse correlation can also be seen in the width of
the distributions between the top two panels, for the non-atlas methods. In the case of the
RGS clustering, this can be explained by the fixation of the heterogeneity to one (see bottom
panel of Fig.3.2), leading to quite homogeneous numbers of voxels per cluster, but to a wide
range of the number of nodes, namely from 200 to 1200. Since this range is so large, it could
be argued that graph properties that depend on this number would not be comparable in
a meaningful fashion. In order to take care of such dependencies, we include the number
of nodes in our statistical analysis (Sec. 3.4.5). For Ward clustering we can observe that
the numbers of nodes is inversely correlated not only with the average number of nodes its
variability, but also with the average heterogeneity and its variability. We observe the highest
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Figure 3.2: Node properties across different clustering algorithms. For each of the seven clustering
methods detailed in Sec. 3.4.3 and Table 3.3, and each subject categorized in the health conditions:
control (C, blue dots), mild cognitive impairment (MCI, green dots), and Alzheimer’s disease (AD,
orange dots) we calculate the total number of nodes/clusters generated (upper panel), the average
number of voxels per node (middle panel), and the average cluster heterogeneity.

degree of heterogeneity for atlas clustering, presumably due to the high number of voxels
per cluster.

Comparing node properties between the classes of clustering methods, atlas and ward4 clus-
tering seem to be quite similar, which suggests they might result in similar graph properties
and diagnosis performance. In particular, we note that these methods reveal a much smaller
heterogeneity for the MCI group than for the control and AD groups.
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3.2.1.2 Edge definition by means of functional connectivity

The edges of the graphs are constructed in four different ways, described in detail in Sec
3.4.4. Linear correlations (corr ) are based on the Pearson correlation coefficient; non-linear
correlations (H2) result from a non-linear fit of piecewise linear correlations; mutual informa-
tion transfer (MIT ) measures the amount of shared information between two time varying
signals and transfer entropy (TE ) describes in how far the future uncertainty is reduced by
the preceding activity of the considered pair of nodes. As with the clustering algorithms
described in the previous section, we defined differently parameterized variants of these four
classes of technique (e.g. generating directed D or undirected Ugraphs) which are listed in
Table 3.4.

combination ŵC ŵMCI ŵAD

ward corr 0.328± 0.021 0.337± 0.04 0.315± 0.023

RGS corr 0.405± 0.076 0.363± 0.049 0.397± 0.113

atlas corr 0.319± 0.02 0.334± 0.054 0.307± 0.022

ward H2 0.443± 0.18 0.398± 0.081 0.414± 0.057

RGS H2 0.452± 0.1 0.471± 0.126 0.493± 0.179

atlas H2 0.36± 0.057 0.352± 0.039 0.355± 0.042

ward MIT 0.201± 0.004 0.2± 0.007 0.197± 0.004

RGS MIT 0.221± 0.026 0.204± 0.011 0.218± 0.037

atlas MIT 0.196± 0.003 0.197± 0.008 0.193± 0.003

ward TE 0.163± 0.013 0.158± 0.015 0.156± 0.018

RGS TE 0.158± 0.026 0.149± 0.02 0.152± 0.042

atlas TE 0.163± 0.016 0.17± 0.011 0.165± 0.011

Table 3.1: Mean and standard deviation of edge weight across different edge definitions. Means
and standard deviations (in brackets) are taking across the average edge weight of every individual
graph in a health condition. Highest mean edge weights for each combination across the three health
conditions are highlighted in gray.

For each combination of vertex (RGS, Ward or atlas) and edge definition technique (corr ,
H2, MIT , TE ), we averaged over the weights generated in each health condition for each
variant of both techniques. For example, for the combination of region growing and transfer
entropy (RGS TE ) we averaged over all combinations of clustering implementation (RGS1
and RGS2) and edge detection (BTEU1, BTEU2, BTED1, BTED2 ). The results are shown
in Table 3.1 and exhibit a high variability in the mean connection weights. For instance,
the combination RGS TE yields a mean weight of 0.152 for controls, which is three times
lower than the maximum mean weight of 0.452 obtained by the RGS H2 combination. In
particular, RGS clustering yields higher values compared with Ward and atlas clustering for
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model-free edge definitions (corr , H2, MIT ). The smallest values are obtained for TE . As a
consequence, even small thresholds e.g. wmin = 0.3 already cause TE graphs to disintegrate.
Accordingly, not all graph properties can be calculated and used for statistical analysis, as
shown in Sec. 3.2.3.

It is also notable that there is no systematic relationship between the three health conditions -
for RGS corr , the control graphs have the highest mean weight, for RGS H2 the AD graphs
have the highest weight, and for atlas corr it is the MCI graphs. These results demonstrate
that conclusions drawn on health conditions based on weight statistics should be treated
with suspicion, as the outcome can be strongly influenced by the method of calculation. A

Figure 3.3: RGS clustering yields stronger long-range connection then Ward clustering. Frequency
(upper panel) and connection distance normalized to maximum graph distance (lower panel) across a
range of graph edge weights calculated based on BcorrU1 for RGS1 (light gray bars) and ward2 (dark
gray) clustering . Mean values and standard deviation (blue vertical lines) are calculated across single
histogram values of all subjects independent of health condition.

possible explanation for the higher weights generated by RGS clustering is that it produces a
greater number of shorter distances compared with the other clustering techniques. However,
although Fig.3.3 does indeed confirm that edge weights become smaller with cluster distance,
it does not reveal a bias to shorter weights for RGS. In fact, the converse is true: RGS clustering
yields stronger long-range connections for similar graph sizes (RGS: 379.69± 147.99, Ward:
311.43± 33.59). Therefore we conclude that connecting homogeneous clusters allows stronger
long-range connections to be extracted. However, the statistics of the RGS connections has
a much larger variance then the ones derived from Ward clustering. This is only partly
due to the variance in the number of nodes, since even if we choose three healthy subject
with similar graph size (RGS: 297± 2.16 , Ward: 297.33± 6.6), we still get a higher standard
derivation for RGS clustering in the weight distribution (σRGS/σward = 1.6).

In the following we will treat the distribution of edge weights as a graph property since it
contains information about graph structure.
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3.2.2 Graph properties

A recent survey by Gits (2016) of studies investigating graph properties in AD reveals no
clear and systematic differences between heath conditions. For example, the mean clustering
coefficient was found to be both significantly smaller (Supekar et al., 2008) and larger (Zhao
et al., 2012) in AD compared with the aged-matched control group. We consider it likely
that differences in methodology can account for many of the contradictions. However the
stage of AD reached by the examined subject group may also play an important role. To
investigate this aspect more closely, we examine the finding by Kim et al. (2015) that local
efficiency, which corresponds to our definition of closeness centrality divided by the number
of nodes in the network minus one, is increased for MCI, decreased for initial stages of AD
and increased for severe AD stages with respect to the control group. The results of applying
similar methods (altas-based clustering combined with BMITU ) are shown in Fig.3.4. The
top panel shows the relationship between the health conditions when closeness centrality is
calculated on the full, non-thresholded graph, which reproduces the findings of Kim et al.
(2015) at least for initial stages of AD. However, if the measure is calculated on the graphs’
rich-clubs, i.e. the sub-graphs consisting of the nodes in the top 10% for degree, a different
picture emerges, as shown in the middle panel of Fig.3.4. Here, AD has an increased closeness
centrality with respect to both the control and mild cognitive impairment groups, which is in
line with advanced AD stages in Kim et al. (2015) .

More evidence that the outcome of a graph theoretical analysis can be highly sensitive
towards the exact methodological implementation is given by considering the difference
between the mean weights in the control and the AD conditions, and its significance (Sec.
3.4.7.1), in dependence on the thresholding weight used to convert weighted graphs into
simple graphs. This is illustrated in the bottom panel of Fig.3.4. Here, depending on where
we set the threshold for considering an edge to be relevant, results having a significance
level of p < 0.05 can be observed for both ŵC > ŵAD (wmin ∈ {0.0, 0.1} ) and ŵC < ŵAD

(wmin ∈ {0.3, 0.4}).

Extending this analysis, we find that contradictory significant results can be obtained for a
variety of graph metrics across (and sometimes within) clustering methods. Fig.3.5 shows
the percentage of significant results obtained for health condition relationships in average
edge weight, weighted degree, shortest path and clustering coefficient. Most strikingly, for
most examined relationships, if significant differences are found at all, they are found in both
directions, e.g. both for d̂C > d̂MCI and for d̂C < d̂MCI (weighted degree). Often a clustering
algorithm favors a particular comparison direction, e.g. for the clustering coefficient, RGS
clustering yields ĉlcMCI > ĉlcAD whereas ward and atlas clustering yieldĉlcMCI < ĉlcAD

for ward and atlas-based clustering. However, we also find cases significant differences
are found in both directions with approximately equal frequency, such as ŝpC > ŝpAD and
ŝpC < ŝpAD for ward clustering. In addition, we find some clustering algorithms show a
systematic behavior across metrics, e.g. for RGS x̂C > x̂MCI with x ∈ {w, d, sp, clc}.

The largest number of significant differences are found for the comparison of controls with
MCI, followed by the comparison of controls with AD. Only few significant differences of
the means are found for AD and MCI. This relation among the groups is in line with the
observed differences in heterogeneity observed for ward and atlas clustering, for which MCI
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Figure 3.4: Relationship of sub-graph properties across heath conditions is dependent on graph
size. Top panel: Average closeness centrality ĉc across graph nodes for whole graphs constructed
with atlas BMITU for the different health conditions C (right), MCI (middle) and AD (left). Each
dot corresponds to the graph of an individual. Middle panel: as in top panel, but on the basis of
the rich-club graphs. Bottom panel: Difference of the averaged ward1 BMTID2 graph weights of
the control group ŵC and the AD group ŵAD (left vertical axis, blue discs) and significance of this
difference (right vertical axis, turquoise diamonds) as functions of the graph thresholding value wmin.
Note: all ŵ are positive and are only calculated as long as graphs are connected (which is the case
for wmin<0.5). Average is taken across the weights of individual graphs. The dashed dark blue line
indicates ŵC − ŵAD; the dashed turquoise line indicates a significance level of 0.05.

showed much lower heterogeneity and AD slightly lower values compared with controls
(bottom panel of Fig.3.2).

Focusing on the clustering methods that bring about the most significant comparing the entire
graph properties distributions results we find the highest fraction of significant differences for
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Figure 3.5: Significant relationships in graph metrics between heath conditions dependent on
clustering methods. Percentage of significant differences for each clustering method RGS (dark gray),
ward (light gray), and atlas (black) for different averaged graph properties: edge weights (top left),
weighted degree (top right), shortest path (bottom left) and clustering coefficient (bottom right).
Fraction of significant differences are calculated for each health condition over all graphs constructed
with the corresponding clustering including all variants in parameters, edge definition techniques,
thresholds and rich-club sub-graphs. The abscissa labels show which pairs of health conditions
are compared (C-MCI, C-AD, MCI-AD) and the ordinate labels the according directions (’<’, ’>’).
Significance is calculated as in the lower panel of Fig.3.4.

RGS, followed by Ward clustering. Atlas-based clustering yields only a few significant results.
Fig.3.6 shows the breakdown of the proportion of significant results for each clustering
method on the edge definition technique (shown in collated form in Fig.3.4). Notably,
transfer entropy (TE) only rarely produces significant differences. All other edge definition
methods show a similar fraction of significant comparisons. The highest number of significant
comparisons across the different graph properties is generated by RGS clustering combined
with MIT .

To what extent a greater proportion of significant relationships is likely to make this graph
construction method a good basis for a diagnostic tool depends on two aspects. First, the
significance test is performed only on mean values, but ideally the overall distributions
should overlap as little as possible. Second, the correlation between graph properties should
be small in order to avoid redundant information.

In this section we considered only the first moments (means) of the graph properties taken
from an individual brain. However, as explained in section 3.4.4, we use the first four
moments of the individual distributions for our statistical analysis. Since the p-value of the
other moments is not calculated, its influence on the statistical analysis cannot be considered.
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Figure 3.6: Significant relationships in graph metrics between heath conditions dependent on
edge definition methods. Percentage of significant differences for each clustering technique (ward
(left), RGS (middle), atlas (right)) for each class of edge definition method clustering method (corr
(dark blue) , H2 (light blue), MIT (purple), TE (pink)) for averaged graph properties: edge weights
(top left), weighted degree (top right), shortest path (bottom left) and clustering coefficient (bottom
right). Fraction of significant differences are calculated for each health condition over all graphs con-
structed with the corresponding clustering and edge techniques including all variants in parameters,
thresholds and rich-club sub-graphs. Significance is calculated as in the lower panel of Fig.3.4.

Figure 3.7: Sensitivity of subject order to clustering and edge detection techniques The dendro-
gram shows the distance of subject order, calculated by ordering all subjects according to their average
graph edge weights and calculating the euclidean distance between the resulting rank arrays. For
better legibility, instead of naming the dendritic leaves, of which every leaf corresponds to a particular
combination of clustering and edge definition techniques, e.g ward2 BTED2, the top row of colors
code for the class of cluster method: ward (light gray), RGS (dark gray) and atlas (black); and the
bottom row codes for the class of edge definition method: corr (dark blue), H2 (light blue), MIT
(purple) and TE (pink).

In order to evaluate the methods based on robustness due to methodical variation, we in-
vestigate how the order of subjects (all subjects independent of their health conditions are
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ordered according their average value of a certain graph property) is affected by the exact
realization of the graph construction methods. Graphs constructed by methods based on
similar underlying features of the data will tend to show a systematic ordering of subjects,
regardless of the absolute values of the calculated graph metrics. Fig.3.7 illustrates the com-
monalities and differences are illustrated with a dendrogram (see section 3.4.7.2) calculated
on the Euclidean distance between the resulting ordered arrays of average graph weights.
The continuous pink area show that graphs constructed using transfer entropy are most
robust to the choice of clustering technique. Moreover, linear and non-linear correlations
(dark and light blue) occupy contiguous blocks and so are most similar to each other. The
leaves denoting atlas clustering (black) are rather spread out, indicating a high sensitivity of
this method to the choice of edge definition.

In this section we have shown that the relationship of graph properties between health
conditions strongly depends on the methods used for graph construction. For our data we
find more significant mean differences for control-AD and control-MCI then for MCI-AD.
With respect to clustering and edge definition methods, the most significant differences are
found for RGS and Ward clustering, and for model-free edge definitions. These results show
that conclusions on how graph properties change due to AD have to be drawn carefully, and
ideally validated by other methods, as they can be highly sensitive to the methods used for
graph construction.

3.2.3 Evaluation of graph construction methods based on negative surprise

Figure 3.8: Negative surprise of the different graph construction methods. Negative surprises for
all graph construction methods except H2D. Each dot represents a specific node clustering (e.g. RGS1)
and edge definition (e.g. BCorrU1). Dots are grouped together according to their main class (e.g.
RGS corr ). Red dots highlight the results of ward4 clustering. Negative surprise expected by chance
is -1.1 .

Having examined the consequences of particular choices for clustering and edge-definition
techniques in the previous sections, we now evaluate their combinations by considering
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their ability to help a clinician to discriminate among patient groups. This discrimination is
achieved by using the graph data within a statistical model, which specifies the likelihood of
the graph data. The model is described in Sec. 3.4.6; the likelihood is a t distribution which
depend on a set of parameters. In general, the kind of graph data – i.e. their construction
method – and the statistical model with its parameters are interdependent: they cannot be
freely varied separately. Therefore our evaluations of the predictive power of the various
graph construction methods have to be understood with a caveat: they depend on our specific
choice of statistical model.

To quantify the discriminating power for each graph construction combination, we use a
metric based on the final probabilities for the correct health conditions known as the log-
probability, or negative surprise (Bartlett, 1952; Good, 1956, 1957a): a sure event, i.e. with unit
probability, has surprise equal to zero; whereas an impossible event, i.e. with zero probability,
has surprise equal to infinity, reflecting the fact that its occurrence would be contrary to all
our expectations. A high surprise (in absolute value) therefore signals a low predictive power
of the data we are using. The expectation or average of the surprises is the Shannon entropy
(Shannon, 1948; Bartlett, 1952; McCarthy, 1956; Bernardo, 1979; Jaynes, 2003, Sec. 11.3).

Another possibility, of a more decision-theoretical character, is to consider a metric based on
the average utilities obtained with each particular graph-construction method. Given several
possible courses of action (e.g., treat or dismiss) and their utilities or costs with respect to each
health condition (e.g., treating an Alzheimer patient, dismissing a healthy patient, dismissing
an Alzheimer patient, or treating a healthy one), the clinician should choose the action that
maximizes the expected utility, the expectation being calculated from the final probabilities
for the possible health conditions (Sox et al., 2013). This kind of metric therefore requires not
only the final probabilities – which depend on the graph-construction method – but also a
table of utilities.

Numerical tests show that the two kinds of metric yield similar results, at least for utility
tables close to the identity (treating an ill patient and dismissing a healthy one have unit
utility; the remaining combinations have zero utility). We therefore choose a metric based on
the negative surprise, which is simpler and more intuitive than a utility metric.

In order to have an approximate idea of the relative predictive powers of the graph-
construction methods we would like to use a statistical that can be kept the same, as much as
possible, across different methods. For this reason we choose a model based on the working
hypothesis of sufficiency of mean and correlations of past data, as explained in the Introduc-
tion. This model ignores any restricted range of variability of graph quantities (e.g. positive
or bounded). As explained in Porta Mana et al. (2018), this choice is non-standard but does
not entail contradictions. The model has some free parameters; their values reflect the fact
that the units of measure for the graph quantities make the latter of order unity. This choice of
a generic, common statistical model allows us to sidestep the demanding problem of tailoring
it for the different graph quantities from our 850 graph-construction methods.

Fig. 3.8 show the obtained negative surprises for all combinations of graph construction
methods except H2D, which is left out due to inadequacy of the statistical model, resulting
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in unrealistic values between −1.26 and −0.66 with a mean and standard deviation of
−0.94± 0.19.

The differences in negative surprise between the different graph construction method are
in general small. The best results are obtained for ward4 clustering combined with mutual
information (MIT ) based edge definition. Across edge definition methods, linear correlation
(corr ) and mutual information give the best results and transfer entropy (TE ) the worst. The
rather poor performance of TE edge definition is in line with the small number of significant
differences found for this method (compare Fig.3.6). Comparing the different clustering
methods, atlas and ward4 clustering give the best results, as long as the edge definition is not
TE . These two clustering methods have in common a very small number of graph nodes and
(correspondingly) the highest number of voxels per cluster (compare Fig.3.2).

As explained a few paragraphs above, the comparison of graph-construction methods can be
affected by the statistical model and its parameters, especially for small datasets. As a comple-
mentary touchstone we compare the negative surprises with the classification performances
of a support vector machine (SVM, section 3.4.7.1) based on the same graph constructions. In
a clinical setting, a misclassification between control and AD has more severe consequences
than between MCI and AD. To avoid introducing an asymmetric misclassification penalty,
we perform the classification between pairs of classes only (control-AD, C-MCI, MCI-AD).

Figure 3.9 shows the relationship between the SVM performance (measured as proportion
of correct classifications) against the negative surprise. As long as TE edge definition is ex-
cluded, the two performance measures are positively correlated. In particular RGS clustering
achieves low performance in both negative surprise and SVM classification. Furthermore, at-
las clustering achieves a high classification performance across all edge definitions. The exact
SVM classification results for each realization of graph construction method are depicted in
Fig.S2 in the supplemental material.

Figure 3.10 demonstrates that thresholding graphs has only a minor effect on the negative
surprise for small thresholds up to 0.2. No systematic relationship can be observed for the
effect of larger thresholds; for example, increasing the threshold to 0.4 causes a decrease in
negative surprise for RGS clustering with linear correlations or mutual information, but an
increase for atlas clustering with transfer entropy edge detection. Likewise, the creation of
highly connected and rich-club sub-graphs typically decreases the negative surprise, but
in some cases increases it (e.g. RGS H2U ). Overall the highest negative surprise (−0.66) is
obtained for ward4 clustering combined with BMITU1 thresholded at wmin = 0.1.

These results suggest that the best combination of graph construction techniques to use for this
data set is the atlas-based or ward4 clustering combined with linear correlation methods or
mutual information transfer. Thresholding the graph edges, which might reduce experimental
noise and lowers computational complexity, has only little effect on the predictive power, as
long as threshold values are small. Reducing the graphs complexity via larger thresholds or
extracting the rich-club of the graph should be done with care, since the results can change
in either directions. Although transfer entropy yields lower negative surprises then the
model-free functional connectivity measures, we would not conclude that this edge definition
performs worse in general, since it achieves high values in SVM classification. It is very likely
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Figure 3.9: Relationship between SVM classification performance and negative surprise. the aver-
age SVM performance achieved by each combination of clustering method and edge definition with
respect to each pair of health conditions: control-AD (top panel), control -MCI (middle panel) and
MCI-AD (lower panel), is plotted against the negative surprise calculated for all health conditions.
Each marker corresponds to the averaged performance across the parameter space of a specific clus-
tering method (atlas (black squares), Ward (dark gray octagons), RGS (light gray pentagons)) and a
specific edge defintion (corr , H2, MIT , TE ). The regression line is calculated for all points but TE
(superimposed red crosses). Pearson correlation coefficients r of the datasets are r = 0.59 (top panel),
r = 0.77 (middle panel), r = 0.69 (lower panel).

that our choice of statistical model is not ideal, and a more tailored choice would improve
performance.
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Figure 3.10: Negative surprise in edge-thresholded graphs. Negative surprise for different graph
edge thresholds wmin (wmin = 0 for complete graphs, stressed by a vertical dashed line) and richclub
graphs (rich) across different edge definitions: corr (first panel), H2U (second panel), MIT (third
panel), TE (last panel) and different clustering methods ward (light gray), RGS (dark gray) and
atlas (black). Every dot is the result of averaging across all possible parameters of a general graph
construction method (for wmin = 0 the average across all points of a swarm in Fig.3.8). Since some
methods yield small edge weights, some graphs become unconnected for large wmin such that the
statistical analysis is not conducted and no values (dots) are depicted here. Markers are connected for
better visual comprehension.

3.3 Discussion

In this article we have compared different techniques for constructing and analyzing graphs.
By applying a statistical model, we have demonstrated a principled method for choosing a
combination of techniques for a given data set. By examining the varied outcomes of the
techniques, we have shown how sensitive the results of graph theoretical analyses, such as
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significant differences in mean properties, can be to the choice of clustering or edge definition
technique.

With regards to the predictive power of the graph construction techniques, measured in terms
of negative surprise, we find that Ward and atlas clustering yield the highest performance
of the clustering techniques, and region growing and selection clustering (RGS) the lowest.
In particular, the variant of Ward clustering that produces large brain clusters and small
numbers of nodes (ward4) achieved the highest performance values. Analogously for the
edge detection methods, we find better performance for the model-free methods (linear
and non-linear correlations, mutual information transfer) than for the model-based method
of transfer entropy. For this particular data set, a combination of ward4 clustering with
mutual information derived edges achieves best results. Therefore, we would recommend
this combination as the primary target for a more narrowly focussed investigation based on a
larger data set.

The performances we obtain are above chance level but still far away from optimal prediction
of the three health conditions. One reason for this sub-optimal prediction might lie in our
choice of statistical model and its parameters. With our small data set (26 controls, 16 MCA,
14 AD) the model and its parameters have a high influence on the final probabilities, and thus
on the performance (Porta Mana et al., 2018). We avoided tailoring the statistical model for
the theoretic and practical reasons explained in Sec. 3.2.3. Even if the model is not tailored,
the results are consistent with the classification performance of support vector machines (see
Fig.3.9 and supplemental data Fig.S2), for the model-free edge definition techniques.

It remains unclear why Ward and atlas clustering are more successful than RGS, especially
in combination with model-free edge definition. One possibility is that this is related to the
large variability in graph sizes generated by RGS (Fig.3.2). In addition, the variance of weight
distributions across subjects, and the variance of the cluster distances, are much larger in
RGS then in ward clustering (Fig.3.3). This could be related to the variance in the number
of nodes; however, choosing graphs similar in size causes even higher variances (Sec. 3.2.2).
Therefore we assume that the number and connectivity of the small functional units extracted
by RGS are highly variable across subjects. This variance might be even higher across subjects
within a health condition than across health conditions, such that changes due to AD cannot
be detected. This assumption might at first glance seem to contradict the high number of
significant comparisons observed (Fig.3.5). However, we only calculate the significance level
for the means of the distributions and not their entire shape. In addition, it is likely that some
graph properties correlate with the graph size, and thus that apparent significant differences
in graph properties are simply reflecting significant differences in numbers of nodes detected,
and do not provide further information useful for classification or understanding the nature
of the disease. Further investigation is needed on this matter.

The low negative surprise of transfer entropy (TE ) compared with other model-free func-
tional connectivity measures might have several reasons. The comparison of the negative
surprise with the support vector machine classification suggests that a better choices of stat-
istical model is possible: the classification results for TE are similar to those of the model-free
measures. In TE the data of a certain time interval in the past is used in order to calculate
how much the uncertainty of the future is reduced. Here we use the data of the last 15
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sec. This time period might be poorly chosen, influencing the overall negative surprise. In
addition TE is more sensitive to short recording periods than other methods, which may
well also result in a reduced performance (Pereda et al., 2005).

With regards to the robustness of the graph theoretical outcomes, we discovered that relation-
ships between mean graph properties, such as closeness centrality, edge weight or clustering
coefficient (Figs. 3.4 and 3.5) were sensitive to choice of clustering and edge definition tech-
niques, to parameter choices for a given technique, and to the manner in which sub-graphs
were defined (thresholding value and rich club). For most relationships between graph
properties X , we could find significant (p < 0.05) differences in both directions, i.e. both
XAD > XC and XAD < XC, for specific choices of clustering and edge definition technique.
This strongly suggests that a degree of suspicion should be applied to studies reporting such
significant differences, especially if these results are argued to give insight into how a disease
affects brain properties, unless the significance level is much more compelling or the reported
differences can be validated with alternate methods.

We also investigated the sensitivity to method choice of the ordering of subjects according to
a graph theoretic metric (Fig.3.7). In this analysis, transfer entropy was the most consistent.
Nevertheless, the distribution of the negative surprises is as broad for transfer entropy as
for other edge definitions (Fig.3.8). In general, the exact parameter selection within an edge
definition method causes only slight changes in the negative surprise, more crucial is the exact
realization of the clustering method: ward4 clustering generally achieves a better performance
then ward3 clustering. These two variants differ only in the number of predefined clusters
(see supplemental material Fig.S1). Applying a lower threshold wmin on the graph’s edge
weights has little effect on the negative surprise for all methods, as long as only small weights
(up to 0.3) are set to zero. Thresholding higher weights or extracting the graph’s rich-club
has unpredictable effects on the results, and so should be used with caution (Fig.3.10). Atlas
clustering was least consistent in the subject ordering analysis, suggesting that although it
may provide a good basis for a diagnostic tool, care should be taken in reporting discoveries
of particular relationships in graph properties between health conditions, as these may well
turn out to be critically dependent on the edge definition method used.

Due to the intense computational requirements of the survey performed in this article, we
recognize that it would be advantageous develop heuristics for choosing between graph con-
struction methods without performing the full calculation for each combination. Our results
suggest that properties visible at the clustering stage, such as average heterogeneity, may
give some indication of predictive performance: graph constructions that result in different
degrees of heterogeneity between the health conditions seem to be more discriminable by
the later steps of the calculation. More research is needed in this area, which is outside the
scope of the current study. In addition, it is tempting to consider t-test results of the mean
graph properties as a heuristic. Our results suggest that this approach is largely inadequate.
It holds for edge definition via transfer entropy, which gives very few significant results
and the negative surprise is rather small compared with the model-free edge definitions.
Conversely, region growing clustering yields most significant differences but a generally poor
negative surprise. This may be due to graph properties being highly correlated, and so not
providing additional information to the statistical model. In addition we used the first four
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moments (wherever possible) in our statistical model, rather than just the mean, which may
also partially account for this apparent contradiction.

In addition to considering the predictive power and robustness of graph construction tech-
niques, we can also evaluate them according to their practicality, i.e. speed of calculation
and the extent to which they are easily available in established medical infrastructure and
diagnostics. In general, applying graph theoretic measures to fMRI data for improving AD
diagnosis makes sense, since MRI scans are already implemented in AD diagnostics for
detecting structural changes such as hippocampal dystrophy caused by AD or AD-unrelated
pathology (e.g. brain tumors). Softwares such as SPM (Tzourio-Mazoyer et al., 2002) and
FSL (Jenkinson et al., 2012) are frequently used in medical research and mainly support
clustering that is atlas and independent component analysis based. Ward clustering, which is
the fastest of all these clustering methods, is a standard hierarchical clustering method and
implemented in all standard programming softwares such as Python and Matlab. The region
growing algorithm is not implemented in established softwares and is also computational
very demanding. Given that it does not out-perform atlas or Ward clustering, we therefore
do not recommend it. For edge definition and graph properties, several software packages
are available based on Matlab (Kruschwitz et al., 2015; Wang et al., 2014) or Python1, which
provide a comprehensive range of edge definition and graph analysis methods.

In general we recommend using statistical models and not pure classifiers such as support
vector machines as diagnostic tools, since statistical models calculate a probability of a
diagnosis rather than assign a classification, i.e. ’Given the fMRI scan, person x has a 80%
probability of having Alzheimer’s disease’, rather than ’Given the fMRI scan, person x has
Alzheimer’s disease’. Probabilities can be easily combined with other probabilities of other
diagnostic tests (Porta Mana et al., 2018) such as cognitive assessment, amyloid beta and
tau protein occurrence in cerebrospinal fluid, blood tests, and structural MRI2(Johnson et al.,
2012). This allows the medical doctor to conclude, for example: ’Given the results of the
cognitive test and cerebrospinal fluid analysis and structural and functional MRI scan, person
x has a 95% probability of having Alzheimer’s disease’. After the estimation of the probability
for a disease, she has to decide on a treatment, also taking into consideration such factors
as ’how harmful would the treatment be for a healthy person’, which can be expressed in a
utility function (Porta Mana et al., 2018). In addition, the statistical model used in this work
allows an estimation of how much the model can be trusted, and therefore evaluate whether
the sample size is sufficiently large (Porta Mana et al., 2018).

Relationship to previous studies

Studies focusing on the graph properties extracted from resting-state fMRI in AD and its
pre-stages generally have one of two aims. The first aim is to identify significant differences
in the graph properties between health conditions, and to use these to gain insight into the
effects of AD on the physical brain and its cognitive processes. These studies complement
the picture revealed by investigations based on structural MRI and functional changes on

1https://github.com/dpisner453/PyNets
2https://www.alz.org/research/diagnostic_criteria/

https://github.com/dpisner453/PyNets
https://www.alz.org/research/diagnostic_criteria/


78 3 Extraction and analysis of graphs from rfMRI as diagnostic tool for AD

the basis of EEG and MEG recordings. Typically a variety of graph properties (e.g. nodal
degree, clustering coefficient, averaged shortest path, local efficiency, betweenness centrality,
global efficiency, small worldness) are calculated, and used to motivate an account of how
disease-related modifications to these properties result in a reduced capacity to transfer and
process information.

However, such studies reveal entirely contradictory results. For example, the value of
the clustering coefficient in AD with respect to controls has been reported to be increased,
unchanged, and decreased, respectively (Zhao et al., 2012; Sanz-Arigita et al., 2010; Supekar
et al., 2008). Analogous contradictions have been found for the comparative length of
the shortest path (Sanz-Arigita et al., 2010; Supekar et al., 2008; Zhao et al., 2012). These
contradictions could be caused by methodological differences or by not separating the
different states of AD. Our results show ample evidence that the precise choice of graph
construction techniques can easily account for contradictory findings, even for atlas based
clustering, in which the number and size of clusters is held constant across all subjects
(Fig.3.5). Evidence that the separation of different AD stages is relevant was provided by
Kim et al. (2015), who demonstrated a non-monotonic behavior of global efficiency, local
efficiency and betweenness centrality across different stages of AD and MCI. In our study, we
could reproduce the pattern of increase and decrease of closeness centrality across conditions
(Fig.3.4). However, we also demonstrate that the same analysis based on the rich-club
sub-graph yields a different pattern, and that contradictory (but significant) results can be
obtained for the same graph construction techniques with different choices of threshold. We
thus conclude that differences in graph properties between health conditions are currently
ill-suited to provide an account of disease mechanisms in AD, unless either: 1) a specific
method of graph construction can be shown to be more representative of the underlying
connectivity than other methods, 2) the differences can be shown to be robust to choice of
graph construction, 3) the differences can be validated by another analytical approach, or 4)
the significance level is shown to be substantially more persuasive than p < 0.05.

The second category of studies use graph theoretical information as input for machine
learning algorithms to classify the health conditions of the subjects. Note that for this
purpose it is irrelevant if a difference between health conditions is not robust to method
choice, as the goal is not to understand the effects of the disease but to robustly distinguish
between conditions. Recent studies have reached very high performance: 100 % accuracy
in discriminating AD and control Khazaee et al. (2015), and 93 % for AD, MCI and control
classification (Khazaee et al., 2017). In the latter work they extract more than two dozen
local and global graph properties, resulting in roughly 3000 features, since each of the local
properties is calculated for all brain areas. Only a small subset of features is then used
for classification, e.g. in-degree of the left middle temporal gyrus. They found that the
classification power of local graph measures is larger than that of the global ones. Local
changes in graph properties that do not propagate to global mean values have also been
reported for area specific (frontal cortices, parietal and occipital regions) synchronization
levels. (Sanz-Arigita et al., 2010)

In this work we do not compare node-specific graph properties, because Ward and RGS
clustering do not result in the same spatial location of clusters across subjects. Instead,
we consider, wherever possible, the first four moments of the entire distributions of graph
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properties. This is more information than typically used for global measures, where often
only the first moment (the mean) of a graph property distribution is taken into consideration.
Nevertheless, it is still possible that considering single nodes, of which some may be more
damaged by AD than others, could yield a better diagnostic performance. that single nodes,
as they are more attacked by AD then others, give a better diagnostic performance. This
requires further study in a survey considering only atlas based clustering. Again, this is
out of scope of the current study, but we remark that the statistical model methodology we
employ here would be equally applicable to such an investigation. The advantage of taking
the entire distribution lies in the possibility of using purely data driven clustering algorithms
(e.g. Ward clustering) that can be substantially faster than atlas based clustering, since they
do not depend on a time and memory consuming registration of the individual brain image
to standard space. In addition, the global distribution is more likely to be more robust against
brain morphologic abnormalities such as brain tumors or brain shrinkage, and is more stable
across recording sessions Wang et al. (2014); Telesford et al. (2010). Finally, a short recording
time might be expected to have a weaker influence on entire graph property distributions
then on single nodes. Thus we conclude that global measures are preferable, if a good
diagnostic performance can be reached. Although the goal of this work was not classification,
we note that we obtain up to 80− 90% correct classification using an off-the-shelf support
vector machine on leave-one-out subsets of our data for pairwise (C-AD, C-MCI, AD-MCI)
comparisons.Whether global measures can reach the impressive performance shown by
Khazaee et al. (2017) can only be investigated on a sufficiently large data set, ideally with
several hundred participants.

Limitations of this study

In each step of the graph construction and analysis pipeline (Fig.3.1) we set limits to the
endless space of possible methods and their corresponding parameters. Here we will shortly
summarize the reasons motivating the selection of the methods examined here and the
exclusion of others, given the constraint of limited computational and temporal resources. As
a general principle, we aimed to include the most commonly used method(s) and additional
methods that we found to be reasonable, even if they are not currently frequently used.

Starting with the fMRI pre-processing, we had to decide whether to include global signal
regression. The global signal (the average activity across all brain voxels) is assumed to
originate partly from vascular and respiratory processes that not represent neuronal activity.
However, there is also evidence that it contains neuronal-signaling based components, since
it is negatively correlated with the EEG signal and strongly correlated with the activity of the
largest network in the brain (the default mode network, which plays a major role in rest state
activity) when noise levels are low (Murphy & Fox, 2017). Without global signal regression,
the Pearson correlation distribution derived from the signal of all voxels, or the average
activity of clustered voxels, is biased to the left such that negative values are rare and small.
The correction for the global signal centers this distribution, such that negative values are
much more prominent. This also changes the properties of the graphs extracted from such
data, for example an increase in modularity combined with fewer unconnected nodes has
been reported (Schwarz & McGonigle, 2011; Hayasaka, 2013).
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Speaking against global signal regression is the finding that correction for white matter, CSF
and motions yield the most stable graph properties across sessions compared with additional
applied global regression (Schwarz & McGonigle, 2011). In diagnostics it is important to
have only small variance in the outcome across different sessions if the health condition of a
subject is stable, such that small changes that indicate a worsening of the health condition
can be rapidly detected. Moreover, we define the edges of our graphs as the absolute values
of the functional connectivity values. As the negative part of the correlation distribution is
small without global regression, different possible treatment of negative correlations (taking
the absolute values or setting them to zero) should have only a small influence on the
resulting graph properties, at least when the underlying functional connectivity are based on
correlations. Consequently, we elect not to include global signal regression on our pipeline.

In the clustering step, the most commonly used method is to define clusters based on cortical
regions defined by a brain atlas. We supplemented this with two data-driven clustering
approaches: Ward clustering and RGS clustering. We selected Ward clustering, as it has
been shown to perform better than alternative hierarchical clustering methods with respect
to reproducibility and accuracy (Thirion et al., 2014). RGS, a method derived from image
processing (Lu et al., 2003), was selected because we could adjust the method to produce func-
tionally homogeneous clusters. In this formulation, the only free parameter of the algorithm
is the minimal cluster size. For both the data-driven methods, we selected parameters such
that graphs did not exceed a maximal size of 1500 nodes, due to computational limitations.
We excluded clustering based on independent component analysis, because of its laborious
implementation and the requirement for domain expertise to distinguish noise from activity-
related components. We also excluded all clustering algorithms that do not take functional
consistency into account, e.g. dividing the voxels into cuboid patches, as has been proposed
for structural data (Amoroso et al., 2017).

With regards to methods for edge definition, we limit our survey to functional connectivity
measures that act in the time domain and not in the frequency domain, thus omitting
frequency based wavelet analysis (Supekar et al., 2008), synchronization likelihood (Sanz-
Arigita et al., 2010) and coherence (Wang et al., 2014). The most commonly used and simplest
functional connectivity measure is the Pearson correlation coefficient (e.g. Zhao et al., 2012),
which we name BCorrU in our work. We also test two additional model-free and one model-
based method. A further model-based method based on Granger causality was excluded
because it is too computationally expensive for larger graphs (Wang et al., 2014).

A thresholding operation is often applied to graphs extracted from fMRI, setting all values
below wmin to zero. The aim of this step is to reduce experimental noise, which mainly mani-
fests in the weaker edges, and to make the computation of graph properties computationally
less demanding (Bordier et al., 2017). The threshold wmin can be defined in several ways: It
can be set arbitrarily , without satisfying a certain demand, or such that certain properties of
the graphs are preserved, e.g. average number of edges per vertex (Sanz-Arigita et al., 2010),
node density (Zhao et al., 2012), small word behavior (Bassett et al., 2008) or a fixed cluster
coefficient. Alternatively, it can be set such that information on the network’s community
structure is maximized e.g (Bordier et al., 2017). In a variant of the thresholding approach,
it has been proposed to transform the edge weights by applying a power law (Schwarz &
McGonigle, 2011). In this study, for the sake of simplicity, we examine graph properties as
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a function of wmin without targeting any specific value of a graph property for simplicity.
Potentially, our results would reveal a different picture if wmin was optimized for each subject
to attain, for example, a specific average nodal degree. However, comparison of these two
different thresholding mechanisms resulted in no major difference in the relationships of
graph properties between the control and AD groups (Sanz-Arigita et al., 2010).

We do not binarize our graphs (setting all values below wmin to zero and those above it to
one ) as is frequently done (Zhao et al., 2012, e.g.), as this leads to a loss of information, and
moreover some distributions of graph properties distribution would become discrete (e.g.
only ones and zeros for edge weights distribution), such that higher moments would be
uninformative. The disadvantage of using weighted graphs lies in the limitation of possible
graph properties. Most graph properties are well-defined for binary graphs and have been
partly extended to weighted graphs. Here, we calculate the (normalized) weighted degree,
shortest path, closeness centrality, clustering coefficient, and the modularity of the undirected
graphs. We only investigate the most commonly used metrics and do not include more
complex method such as the minimal spanning tree (Koray, 2011).

In addition to the restrictions of scope with regards to the examined techniques, a clear limita-
tion of this study is the small data set. As our aim here is primarily to provide a methodology
for evaluating and comparing analysis methods, rather than to draw conclusions on the
effect of Alzheimer’s disease on the graph properties of the cortex, a small data set is less
problematic. Indeed, for the explorative survey carried out here, a large data set would
have been prohibitively expensive with respect to computational resources. Moreover, many
studies applying graph analysis to fMRI data are based on similarly sized data sets, which
highlights the importance of raising awareness about the methodological artefacts we have
identified.

The results of our survey indicate which combinations of methods are promising in view of
Alzheimer diagnosis and which should be investigated further in future studies based on
larger data sets. Naturally, such a study could yield some quantitatively different results,
particularly with regard to the classification performance. Nonetheless, we would like to
summarize some conclusions of the work that are unlikely to change with a larger data
set. First, our results show that different combinations of methods can lead to contradictory
findings with regard to significant differences in mean properties (Sec.3.2.2). This effect is
unlikely to be resolved by a larger sample size. Second, methods showing good robustness
with respect to parameter choice for a small sample size (e.g. TE edge definition, see Fig.3.7),
are likely to remain robust with increasing sample size. Likewise, there is no reason to assume
that methods performing well in all circumstances for the small data set, e.g. MIT clustering
combined with corr edge definition (Sec.3.2.3), would perform worse for larger data sets.
Finally, we assert that thresholding the graphs of a large data set with a small wmin (as shown
in Sec.3.2.3) would similarly not result in a sudden jump in negative surprise.
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Application of approach to other analysis techniques

We have demonstrated a systematic, quantitative approach for comparing and evaluating
sequences of algorithms that result in classification of fMRI data based on the first four
moments of simple graph theoretic metrics defined on the whole graph. However, the
approach we present is equally well suited for assessing pipelines based on other metrics. as
we briefly outline in the following.

One possibility is to consider the graph properties of individual nodes, as these have been
shown to be very informative (Dillen et al., 2017; Khazaee et al., 2015; Wang et al., 2016; Xia
et al., 2014). This entails the use of atlas based clustering. We speculate that a global analysis
of graph properties would be both faster and more robust to brain abnormalities and short
recording times, and so would be the preferable approach if equivalent performance levels
can be attained.

A second possibility is to extend our approach to a hierarchical analysis. This could potentially
be of great use, as previous studies based on PET imaging have suggested that in Alzheimer’s
disease, long range connections become weaker but local clustering increases (Pagani et al.,
2016, 2017). These alterations would not be observable using the graph analyses so far
considered, although we have taken the first step by calculating the modularity, which
compares the ideal dissection of the given graph into modules with that of a random graph
with similar edge weights.

To capture the graph meta-structures it is necessary to cluster graph nodes into modules, or
sub-graphs. Modules can be defined either purely functionally, such that each node (ideally)
has the strongest connections to the nodes in its own cluster, and the weakest connections
to nodes of other clusters, or based on anatomic structures, such that nodes in a cluster
are part of large, anatomo-functionally similar brain areas. Analogous to the variety of
methods for spatial clustering and edge definition investigated in this study, there are many
techniques used to cluster nodes into modules (e.g. k-clustering, hierarchical clustering and
spectral clustering, for review see Schaeffer (2007) or anatomo-functional clustering, see
Pagani et al. (2016)) , and likewise multiple options for analysing the characteristics of the
resulting modular structure (e.g. module degree or participation coefficient; see Guimerá &
Nunes Amaral (2005)). Such a comprehensive study is outside the scope of the current work,
but could well provide great insight into health condition related alterations in the global
network structure of the brain.

Conclusions

In order to achieve a robust and successful Alzheimer’s disease diagnosis based on graphs
extracted from fMRI data, we recommend clustering that results in rather small graphs
with large clusters. Ward clustering, in which the number of clusters can be predefined,
is fast, but requires programming knowledge to implement it. Atlas clustering is well
established standard fMRI analysis software applications, but it is slow and might be affected
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by morphologic abnormalities in the brain, such as atrophy which is a common symptom of
AD.

Edge weights should be calculated based on correlations or mutually information transfer,
especially if a focus of the study is uncovering significant differences in mean graph properties
between health conditions. We emphasize that the existence, magnitude and direction of such
significant differences can be very sensitive to the methods chosen, and the parameterization
of those methods, and so such findings should be reported with care, especially if a biological
interpretation of said findings is claimed. Transfer entropy rarely gives significant results,
but is more robust towards parameter changes in the algorithm and different clustering
algorithms. Finding appropriate statistical models may be an additional challenge for this
method.

Weak thresholding may be used for complexity reduction as it has little effect on performance.
Applying a higher threshold or extracting the rich-club sub-graph (10 % of the nodes with
highest degree) causes unsystematic changes in the negative surprise and should therefore
be used with caution, and validated against the full graph.

In summary, our quantitative evaluation and comparison of graph construction and analysis
methods provides insight into how contradicting results come about in studies of graph
properties of fMRI data, and identifies a number of potential methodological artefacts.
Moreover, it provides a blueprint for establishing appropriate analysis pipelines, and serves
as a well-founded starting point for future research on larger data sets.

3.4 Methods

3.4.1 Data aquisition

The recruitment and neuropsychological assesment of the study participants is given in
Dillen et al. (2017). Demographic information is given in Table 3.2.

Controls MCI AD

number 26 16 14

Age 62.38 [50, 73] 70 [55, 78] 71 [61, 78]

Sex 10 f, 16 m 7 f, 9 m 7 f, 7 m

Years of Education 15.3 [8, 25] 12.75 [8, 21] 12.83 [7, 18]

Table 3.2: Demographic information of participants Average and minimal and maximal values [min,
max] are given for age and years of education; female (f), male(m).

Anatomical MRI and rfMRI images were obtained from a 3T MR-Brain-PET scanner (Siemens,
Erlangen, Germany) in the Memory Clinic Cologne Juelich. The parameters for the single-
shot echo planar imaging sequence of the functional (T2* weighted) image are the following:
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TR=3000 ms, TE=30 ms, FA=90◦, FOV=200 × 200 mm2, matrix=80 × 80, voxel resolution
= 2.5 × 2.5 × 2.8, 50 oblique slices parallel to the infra-supratentorial line, gap=0.28 mm,
interleaved, scan time = 7 min. Parameters of the high-resolution T1-weighted structural
image based on a magnetization-prepared rapid gradient echo sequence: TR= 2250 ms,
TE=3.03 ms, FA=9◦, FOV=256 × 256 mm2, matrix=256 × 256, voxel resolution = 1 mm
isotropic, 176 sagittal slices, no gap, interleaved, scan time=314 sec. For more detail see
(Dillen et al., 2017).

3.4.2 Preprocessing of fMRI-data and extraction of cortical data

Image preprocessing is accomplished using FMRIB’s Software Library tools (Jenkinson et al.,
2012; Woolrich et al., 2009). We carry out the following steps for the structural T1-weighted
image: skull-stripping (Smith, 2002b) with bias field correction (Keihaninejad et al., 2010;
Leung et al., 2011; Popescu et al., 2012) and for the functional T2-weighted image: discarding
the first 10 volumes (out of 140 each taking after 3 sec), motion correction (Beckmann &
Smith, 2004), spatial smoothing using a 4 mm full width at half maximum Gaussian kernel,
high-pass temporal filtering at 0.02 Hz and a six-parameter, rigid-body linear transformation
procedure in MCFLIRT (Jenkinson et al., 2002). More details can be found at (Dillen et al.,
2017), where the same preprocessing is applied. In addition we carry out white matter and
cerebrospinal fluid regression (FSL regfilt, MELODIC) to the functional image in order to
reduce noise.

In order to extract only cortical voxels from the entire brain fMRI image, as needed for
the data-driven clustering described in the next section, we first register cortical regions
(frontal- , occipital -, temporal- and insular-cortex) defined in the MNI structural atlas
(Collins et al., 1995) to the structural and then to the functional space. For this registration
we apply the transformation matrix obtained from registering the entire standard brain first
to the individual structural brain (linear registration with FSL/FLIRT; Jenkinson & Smith
2001; Jenkinson et al. 2002) ) and then to the functional space (non-linear registration with
Advanced Normalization Tools (ANTs; Avants et al. 2011). In order to extract only gray
matter tissue, we apply the gray matter image of the structural space (segmentation with
FSL-FAST (Zhang et al., 2001)) registered to functional space as described above, as a mask to
the to the functional image.

3.4.3 Data-driven and Atlas based clustering of cortical voxels

In order to construct graphs we cluster cortical voxels into regions using three different
methods. Two of these methods, the Ward clustering and the region growing and selection
algorithm (RGS) are data driven such that only neighboring voxels with similar activity are
combined into a single region. For these algorithms the number of regions per brain and
the participating voxels in a region can differ for each individual and strongly depend on
predefined algorithm-specific parameters. The atlas-based cluster algorithm on the other
hand produces the same number of clusters and a constant number of voxels per region
across individuals because the individual brains are mapped onto a standard brain
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3.4.3.1 Atlas-based clustering

For each subject we linearly register the rfMRI image first to the structural, skull-removed
image (image segmentation for skull removing with SPM8, Wellcome Department of Cog-
nitive Neurology, London, UKFSL; linear registration with FSL/FLIRT; Jenkinson & Smith
2001; Jenkinson et al. 2002) and then, through a non-linear mapping, to the MNI standard
brai (non-linear registration with Advanced Normalization Tools (ANTs; Avants et al. 2011);
MNI 152 standard brain, non-linear 6th generation (Grabner et al., 2006)). Regions of interest
(ROIs) of the resulting functional image in standard space are extracted such that they match
the 94 regions identified by the Oxford lateral cortical atlas (regions have a probability above
50% )(Desikan et al., 2006). A demonstration of how the brain is clustered according to the
brain areas given by the atlas is given in the first panel of Fig.3.12.

3.4.3.2 Ward clustering

Ward clustering (python: sklearn.cluster.AgglomerativeClustering, Pedregosa et al. (2011))
is a data driven clustering algorithm, which is initiated by defining each voxel as a cluster
and then, in each iteration step, merge the two neighboring clusters (even of different sizes)
that after merging show minimal intra-cluster variance compared with all other possible
variations of combining two adjacent clusters. In this way, the number of clusters is reduced
by one in each iteration step. In our case the clustering stops after k-clusters (table 3.3) are
formed. Afterwards, we discard away all clusters that comprise of less then p-voxels (table
3.3). An example of the outcome of ward clustering algorithm is depicted in the second panel
of Fig.3.12.

3.4.3.3 Region growing and selection

The region growing and selection algorithm is a modified version of the algorithm described
in (Lu et al., 2003). Region growing implies that each voxel serves as an initial seed (center)
and neighboring voxels are added iteratively if they fulfill a certain growing criteria. (Fig.3.11
a) The condition (Lu et al., 2003) proposed for adding a voxel to a region is based on the
Pearson correlation coefficient R between the averaged time-varying signals of the pre-
merged region and the signal of the voxel to be tested. If this correlation is higher then a
pre-defined threshold T (table3.3), the voxel is merged to the region. We exacerbate the
growing criteria by imposing a second condition that allow the merging of voxels only if
in addition to exceeding the correlation threshold, the resulting cluster is also functionally
homogeneous. Here, functional homogeneity means that the time-varying signals of all voxels
can be expressed as instances of a single signal with varying levels of noise. The number of
independent signals in a cluster can be estimated by the spatial functional heterogeneity h
(Marrelec & Fransson, 2011):

h = n0 +
en0 − bn0

(en0 − en0+1)− (bn0 − bn0+1)
(3.1)
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, where en are the Eigenvalues of the NxN covariance matrix of all N time varing signals
in a cluster that exceed the Eigenvalues generated by the broken-stick model bn such that
en > bn =

∑N
i=n 1/i . The index n0 accounts for the smallest Eigenvalues that fulfill this

inequality equation such that en0 > bn0 and en0+1 < bn0+1 . A value of h = 1 indicates a
homogeneous cluster.

The region selection algorithm iteratively selects the largest region and delete all clusters that
have their centers in that region, excluding the possibility that centers overlap with other
regions. Nevertheless clusters can still overlap (Fig.3.11 b). Applying this framework does
not guarantee that clusters remain spatially connected after deleting regions with overlapping
centers. Nevertheless a check for spatial consistency reveal that only a marginal percent of
the clusters are disrupted in that way. Finally, we took only the clusters that comprised a
minimum number of voxels p (table3.3). How the outcome of RGS looks like is demonstrated
in the last panel of Fig.3.12.

minimal number of number of threshold Tof Pearson

method voxels per cluster p clusters k correlation coefficient

ward1 10 5000 -

ward2 25 5000 -

ward3 10 2000 -

ward4 25 2000 -

RGS1 55 - 0.75

RGS2 50 - 0.75

atlas - - -

Table 3.3: Parameters used for the different clustering algorithms. Abbreviations: ward clustering
(ward), region growing and selection (RGS), atlas-based clustering (atlas).

Figure 3.11: Region growing and selection algorithm a) Region growing, left: each voxel (colored
squares) serves as center for a cluster, right: example of a growing region (purple), only adjacent
voxels that fulfill the fusion criteria are added to the growing cluster. b) Region selection. Small
regions (pink) with centers overlapping with larger regions (green) get deleted (from left to right) in
a iterative manner. Remaining regions can still overlap as long as their centers do not cover other
regions. This illustration is in 2D for simplicity, the algorithm used for fMRI data acts in 3D following
the same rules.
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3.4.4 Edge definition

A graph consists of nodes (vertices) that are connected through edges, that might be weighted
or binary and directed or undirected. We construct individual brain graphs by defining nodes
that represent clusters as described in 3.4.3, such that the mean activity of a cluster becomes
an node attribute. We presume that all graphs are fully connected and edge weights are
defined in terms of functional connectivity. Since functional connectivity can be calculated in
several ways, we apply a range of different connectivity measures. In (Wang et al., 2014) many
such methods are evaluated, taking the structural connectivity of a toy model as reference.
As a starting point, for each proposed category of functional connectivity, measured in time,
we select the analysis measurement that captures structural connectivity best. We follow this
strategy for all proposed measurement categories in(Wang et al., 2014) , leaving out only
Granger causality measures , due to limited computational resources. We thus use linear
and non-linear correlation (corr and H2 ) and mutual information transfer (MIT ) for the
model-free category and transfer entropy (TE ) for the model-based category. In all groups
the bivariate methods perform better then the partial ones. In conclusion we select for each
of the families the bivariate implementation that can be both directed and undirected. For
consistency we use the same abbreviations for the different methods as in (Wang et al., 2014)
and the same Matlab toolbox Mulan3 which they made public. Here we provide only a short
description of the applied methods and more details can be inferred from (Wang et al., 2014) .

Linear correlation (corr ) are measured based on the Pearson correlation coefficient (Rodgers
& Nicewander, 1988) in a pair-wise manner. For directed connectivity (BCorrD) delays of up
to 5 time steps (table 3.4) are considered and the largest connectivity values is selected. We
do not take into account time lags for undirected correlation (BCorrU ).

Non-linear correlations (H2) are based on piece-wise linear correlations of two time signals
on which the non-linear curve is fitted (da Silva et al., 1989). Bivariate directed (BH2D) and
bivariate undirected (BH2U ) are defined as above for linear correlations.

Mutual information indicates how much information is shared between two time varying
signals by means of Shannon entropy (Grassberger et al., 1991). For BMITD1 individual
histograms of two time series are contrasted to the joint histogram across different time
delays. No delays are taken into account in BMITU .

Transfer entropy (Schreiber, 2000) describes how far in the past, the activity of a node can
reduce the uncertainty of the future activity of another node for which also the past activity
is considered. Bivariate directed (BTED , (Chicharro, 2011) and bivariate undirected (BTEU )
are defined as above for linear correlations.

All methods were tested for a window size that comprises the whole time range (130 time
points/6.5 min) and for a sliding window of 50 time points (2.5min) with an overlap of 5
time points (0.25 min) (see table 3.4). If the methods revealed negative weights, the absolute
value was considered . The resulting graphs are directed or undirected weighted graphs with

3https://github.com/HuifangWang/MULAN

https://github.com/HuifangWang/MULAN
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Figure 3.12: Clustering of the cortical functional image. Illustrated are the clustering outcome
of the atlas (upper panels) and the ward clustering (ward4, middle panels) and RGS (RGS1, lower
panels) algorithms for frontal, sagital and horizontal brain sections (from left to right) of a randomly
chosen healthy individual. Individual clusters are depicted by a randomly chosen individual color,
for clustering parameters see table 3.3.

values between zero and one for all methods except non-linear correlations, where values
can exceed one.

Many studies transfer weighted graphs into binary ones by setting all values below a
threshold wmin to zero and above to one e.g. (Zhao et al., 2012). Following this strategy we
also investigate the effect of setting all weights below wmin to zero but leaving higher weights
unchanged. As far as the remaining graphs are still connected (left panels in Fig.3.13 ) and
single nodes are not disconnected from the network (right panels in Fig.3.13) we study the
disease diagnosis capacity for wmin ∈ {0.1, 0.2, ...0.7, 0.8}. In addition we extract the rich club
of the graphs. The rich club is a subgraph that comprises the nodes that are most strongly
connected to the network. In this work we define the rich club as the 10% of the nodes with
highest degree.
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method window size window overlap number of bins max. delay

BcorrU1 130 - - -

BcorrU2 50 0.2 - -

BcorrD1 130 - - 5

BcorrD2 50 0.2 - 5

BH2U1 130 - 10 -

BH2U2 50 0.2 10 -

BH2D1 130 - 10 5

BH2D2 50 0.2 10 5

BMITU1 130 - 5 -

BMITU2 50 0.2 5 -

BMITD1 130 - 5 5

BMITD2 50 0.2 5 5

BTEU1 130 - - 5

BTEU2 50 0.2 - 5

BTED1 130 - - 5

BTED2 50 0.2 - 5

Table 3.4: Parameters of the different functional connectivity measures abbreviations: Bivariate
(B), undirected (U ), directed (D), linear correlation ( corr ), non-linear correlation (H2U ) mutual
information entropy (MIT ), transfer entropy (TE )

3.4.5 Graph properties

This section describes the different graph properties that are either characteristics of single
nodes (weighted degree, closeness centrality, cluster coefficient), of pairs of nodes (shortest
path) or of the entire network (modularity). In the first two cases we get a range of values
for each graph. Since we do not know, which are the important features of the resulting
distributions, we decide to take the first four moments for our statistical analysis. Because
graphs based on data-driven clustering results in different number of nodes and the calculated
graph properties might be dependent on the number of nodes, we also include the number
of nodes in the subsequent analysis (Sec. 3.4.6).
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Figure 3.13: High thresholds on graph edges cause the graphs to dissociate. Upper panel: Illustra-
tion of graph with edge weights larger then 0.1 (wmin > 0.1, left) and larger then 0.9 (wmin > 0.9,
right). In the according weight histograms (lower panels) the red bars correspond to the edges drawn
in the upper graph. Edges corresponding to the black bars are not shown.

Weighted degree

The weighted degree degw describes how strong a node is connected to all other vertices of
the network, obeying the equation:

degw(v) =
∑

u∈V \{u}
wuv (3.2)

where wuv is the weight on the edge between nodes u and v of all nodes V in the graph. This
definition implies a high dependency of the weighted degree on the number of nodes in a
graph. To address this problem, we normalize the weighted degree

degn(v) =
degw(v)

deg(v) · wmax
(3.3)

with wmax being the maximal weight of the graph. The resulting values are between 0 and 1.

Shortest path and closeness centrality

The shortest path distw(u, v) between a pair of nodes u and v describes the path that minim-
izes the sum of the weights of its participating edges. A small shortest path should indicate a
strong functional connectivity, wherefore we consider the inverse of the graph weights for
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its calculation. Its computation is carried out by the Dijkstra’s algorithm (Rivest et al., 2000),
which requires the weights to be positive.

Based on the shortest paths of a network we calculate closeness centrality Cw(v) - a measure
that indicates how often a node v participates in all shortest paths of the graph. It is given by:

Cw(v) =
n− 1∑

u∈V \{v} distw(u, v)
(3.4)

Here, n is the number of all nodes V in graph.

Clustering coefficient

The clustering coefficient cc(v) describes to what degree the neighbors of a node v are
connected among each other and with node v. Since our network is weighted, we use the
Zhang-Horvath clustering coefficient (Zhang & Horvath, 2005; Kalna & Higham, 2007), which
is an extension to the ’standard’ algorithm applied to binary graphs:

cc(v) =

∑
i̸=v

∑
j ̸=v,j ̸=i ŵviŵijŵvj(∑

j ̸=v ŵvj

)(∑
j ̸=v ŵvj − 1)

(3.5)

for i, j neighbors of v and ŵ denoting the weights normalized by the highest weight in the
network, such that 0 ≤ ŵ ≤ 1.

Modularity

A graph can be partitioned into smaller components. Modularity measures the deviation
of the properties of these components as compared to the components of a random graph
with the same edge weight. Accordingly, the modularity of a partition p of a network G into
communities c is given by (Newman, 2004)

Q(p) =
1

2m

∑
i,j∈V

(
wij −

degw(i) · degw(j)
2m

)
δcicj (3.6)

where δcicj is 1 , if community ci of node i is the same as community cj of node j and 0
otherwise and m = 1

2

∑
i,j∈V wij is the total sum of edge weights in a network. Although there

are many different definitions in literature about what a community comprises of , we define
a community as a group of strongly interconnected nodes that make only weak connections
to other communities. In addition a node can maximally contribute to one community, hence
we want to find the partition that maximizes modularity. Because this is computationally
very demanding, it is important to use a very effective algorithm. We therefore use the fast
algorithm by (Blondel et al., 2008), which is implemented in the Python packages community.
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Unfortunately this implementation is only suited for undirected graphs, so we investigate
modularity only for these type of graphs.

3.4.6 Statistical model

The graph data generated with a graph-construction method are used within an exchangeable
parametric statistical model. Let us recall that the purpose of the fMRI scan of a patient is to
give the clinician a likelihood for the patient’s health condition,

P(graph data from fMRI scan | health condition ∧ prior info), (3.7)

which she combines with the likelihoods from other tests and her initial probability assign-
ment, to obtain via Bayes’s theorem a final probability for the health condition (Sox et al.,
2013):

final probability︷ ︸︸ ︷
P(health condition | results of all tests ∧ prior info) ∝

likelihoods


P(graph data from fMRI scan | health condition ∧ prior info)

× P(results of other tests | health condition ∧ prior info)
× · · ·

× P(health condition | prior info)︸ ︷︷ ︸
initial probability

. (3.8)

The prior information also includes test results from previous patients, so that the prediction
becomes the more accurate and reliable the more patients have been previously observed.

The functional dependence of the likelihood on the graph data is determined by the statistical
model we use, and may be different for each health condition. The statistical model is
determined by additional assumptions or hypotheses. Such hypotheses and the functional
form of the likelihood may depend on the particular space of graph data (e.g., real-valued,
or positive, or bounded within a finite range, or combinations thereof), and therefore on the
graph-construction method.

As explained in Sec. 3.2.3, our purpose is to assess as much as possible the relative predictive
power of the different graph-construction methods. We therefore would like the functional
dependence on the graph-data space to be minimal. In the present study we adopt the work-
ing hypothesis that only the first and second empirical moments – means and correlations –
of the graph data from past patients with the same health condition are relevant to make pre-
dictions about a new patient. This hypothesis is adopted for all graph-construction methods.
We also assume our initial knowledge of the graph data to be approximately invariant under
rescalings of their values (Minka, 2001). Finally, we do not take into account the natural range
of variability (positive, bounded, etc.) of the graph data; this choice does not seem to impact
the predictive power of the model (Porta Mana et al., 2018).
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These assumptions almost uniquely determine the statistical model and the likelihood
(Porta Mana et al., 2018): it turns out to be a multivariate t distribution (Kotz & Nada-
rajah, 2004; Minka, 2001; Murphy, 2007). More precisely: Select a particular health condition,
e.g. Alzheimer’s disease. Denote with f0 the d-dimensional vector of graph data obtained
from the patient’s fMRI scan via a particular graph-construction method, and with (fi) the
graph data of n previous patients with the selected health condition. Then the likelihood that
the present patient has the selected health condition is

p[f0| (fi), κ0, δ0, ν0,∆0,M ] ≡ p(f0|κ, δ, ν,∆,M) = t
[
f0
∣∣ ν − d+ 1, δ, κ+1

κ (ν−d+1)∆
]

(3.9)

with
κ = κ0 + n, ν = ν0 + n,

δ =
κ0 δ0 + nf

κ0 + n
, ∆ = ∆0 + n Cov(f) +

κ0 n

κ0 + n

(
f − δ0

)(
f − δ0

)⊺
,

(3.10)

where t is a multivariate t distribution with ν − d+ 1 degrees of freedom, mean δ, and scale
matrix κ+1

κ (ν−d+1)∆, and

f :=
1

n

∑
i fi, Cov(f) :=

1

n

∑
i(fi − f)(fi − f)⊺ (3.11)

are the empirical mean and covariance matrix of the previous graph data.

The parameters κ0, ν0, δ0, ∆0 should reflect our initial knowledge of the graph parameters.
For the reasons explained above and in Sec. 3.2.3, we fix one set of values identical for all
graph-construction methods: κ = 1, (δ0)a = 0.5, ∆0 = 2.5I , where I is the identity matrix.
These values yield an initial distribution (before any data from previous patients) centered
on positive values of unit order of magnitude, as all the graph data indeed are for each
graph-construction methodionship .

3.4.7 Supportive evaluation measures of graph construction methods

3.4.7.1 Significance test

We measure the significance level of the mean values of a graph property distribution
between pairs of the three healthy conditions (control-AD, control-MCI, MCI-AD) based
on the Student’s t-test, if variances are equal (F-test ), and Welch’s t-test otherwise. The
underlying null hypothesis is that the means of the two data arrays are assumed to be equal,
which is rejected for p-values smaller then 0.05.

3.4.7.2 Dendrograms of subject order

Subjects indexed from 1 to 56 (total number of participants) across all healthy conditions
are ordered according to the mean values of the certain graph properties distribution. The
indices of the ordering (the rank) calculated for each graph construction method is then used
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in order to construct the dendrogram. In the dendrogram the Euclidean distance between
two indices arrays is indicated by the height of the top of the U-link linking the two arrays.
In addition indices arrays with a small distance are clustered together.

3.4.7.3 Support vector machines

For all complete graphs constructed by all different graph construction methods we apply
a support vector classification (Python: sklearn.svm.SVC) on each pair of health conditions
(control-AD, control-MCI, MCI-AD). Hereby we choose the graph properties such that the
performance of the algorithm maximizes. We use the default parameters and do not optimize
performance by varying the kernel coefficient or the penalty parameter of the error term.

3.5 Supplementary Tables and Figures

Figure 3.14: Negative surprise of the different graph construction methods. Figure identical with
fig. 3.8 but with different clustering submethods depicted in different colors (see legend) .
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Figure 3.15: Negative surprise and classification results based on support vector machines First
panel: Negative surprise as depicted in fig. 3.15. Note: it is calculated based on all three health
conditions. Other panels: Correct hits based on support vector machine classification for control-AD
(second panel), control-MCI (third panel) and MCI-AD (last panel).
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Chapter 4

Firing rate homeostasis counteracts
changes in stability of recurrent neural
networks caused by synapse loss in
Alzheimer’s disease

The impairment of cognitive function in Alzheimer’s disease is clearly correlated to synapse
loss. However, the mechanisms underlying this correlation are only poorly understood. Here,
we investigate how the loss of excitatory synapses in sparsely connected random networks
of spiking excitatory and inhibitory neurons alters their dynamical characteristics. Beyond
the effects on the network’s activity statistics, we find that the loss of excitatory synapses on
excitatory neurons shifts the network dynamic towards the stable regime. The decrease in
sensitivity to small perturbations to time varying input can be considered as an indication of
a reduction of computational capacity. A full recovery of the network performance can be
achieved by firing rate homeostasis, here implemented by an up-scaling of the remaining
excitatory-excitatory synapses. By analysing the stability of the linearized network dynamics,
we explain how homeostasis can simultaneously maintain the network’s firing rate and
sensitivity to small perturbations.

4.1 Introduction

Accelerated synapse loss is a prominent feature in many types of neurodegenerative disorders,
such as Huntington’s disease, frontotemporal dementia or Alzheimer’s disease (Zhan et al.,
1993; Brun et al., 1995; Morton et al., 2001; Lin & Faber, 2002; Scheff et al., 2014). In Alzheimer’s
disease (AD), synapse loss appears to be particularly important, as it is widespread across
different brain areas and constitutes a key marker in the AD pathology (see e.g. Scheff et al.,
2014).
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The mechanisms underlying AD related synaptic modifications are currently the subject of
intensive research, which has revealed that a number of different alterations at the molecular
level may ultimately lead to synaptic decay (Sheng et al., 2012; Dorostkar et al., 2015; Tampel-
lini, 2015), such as an abnormal occurrence of oligomeric and aggregated β-amyloid-peptides
(Aβ), an abnormal phosphorylation of the tau protein and the occurence of neurofibrillary
tangles, and a disrupted signaling in neuroinflammatory and oxidative stress responses
(Tampellini, 2015; Tönnies & Trushina, 2017; Frere & Slutsky, 2017; Rajendran & Paolicelli,
2018).

Previous studies have uncovered a strong positive correlation between cognitive impairment
in AD patients and synapse loss (DeKosky & Scheff, 1990; Scheff et al., 1990; Terry et al.,
1991; Scheff & Price, 1993; Masliah et al., 1994; Scheff & Price, 2003; Scheff & Douglas, 2006;
Scheff et al., 2011). In contrast, correlations between the cognitive status and the density of
plaques or tangles have frequently been reported as rather weak. Synapse loss is therefore
not merely a structural epiphenomenon of AD, but appears to be the physical correlate of
cognitive decline.

While the most commonly reported early symptom of AD is memory deterioration, the
disease is associated with a wide range of other cognitive problems such as stereotyped,
repetitive linguistic production, visuo-spatial deficits and disorientation, apraxia, and loss
of executive functions, i.e. planning and abstract reasoning (Bennett et al., 2002; Weintraub
et al., 2012). The observed progression of cognitive symptoms goes hand in hand with
brain tissue atrophy (Smith, 2002a; de Toledo-Morrell et al., 2000; Thompson et al., 2003)
associated with loss of synapses (Chen et al., 2018), suggesting that the synaptic degeneration
may underlie the cognitive deterioration following the gradual involvement of different,
functionally specialized brain regions.

However, mechanisms exist that counteract synapse loss (Small, 2004; Fernandes & Luísa,
2016), at least in the early stages of the disease. Various studies have shown that the loss of
synapses is accompanied by a growth of remaining synapses, such that the total synaptic
contact area (TSCA) per unit volume of brain tissue is approximately preserved (DeKosky &
Scheff, 1990; Scheff & Price, 2003; Scheff & Douglas, 2006; Neuman et al., 2014). It is likely
that such compensatory mechanisms underlie the observed delay in the onset of cognitive
symptoms with respect to the onset of symptoms at the cellular level (Morris, 2005).

The heterogeneity in the disease progression and the propensity to transition from healthy
cognitive aging to mild cognitive impairment and dementia may thus be associated to a sub-
ject’s ability to counteract synapse loss and, to a certain extent, maintain global functionality in
a way that masks the progressive underlying pathophysiology. Such homeostatic, regulatory
mechanisms appear to play an important role in counteracting structural deterioration and
preserving computational capabilities. On the other hand, they pose important challenges
to the network’s functionality since they have the potential to disrupt the specificities of a
circuit’s microconnectivity (namely the distribution of synaptic strengths) and thus degrade
its information content (e.g. Fröhlich et al. 2008). Successful homeostatic compensation thus
requires a balanced orchestration which preserves the system’s computational properties and
macroscopic dynamics, e.g., average firing rates (Lütcke et al., 2013; Slomowitz et al., 2015)
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and E/I balance (Zhou & Yu, 2018), as well as the relative ratios and distributions of synaptic
strengths (e.g. synaptic scaling mechanisms; Keck et al. 2013; Vitureira & Goda 2013).

Understanding the circuit-level consequences of synaptic alterations, entailing both the
deregulation by synapse loss and recovery through homeostasis, is essential to understand
whether they represent a negative symptom of the disease or a compensatory response.
One likely effect is the modification of the network’s firing rate. In order to maintain a
physiological operating regime far from activity extremes (quiescence or epileptic activity), a
network needs the capacity to regulate its firing rate.

The degree to which this may be impaired in AD is still under debate (see Styr & Slutsky,
2018; Frere & Slutsky, 2017). Whereas the effects of synaptic alterations on the network
dynamics have been partially characterized, a direct link between synapse loss, network
dynamics and functional decline has yet to be systematically established, with only a few
studies addressing the topic (Horn et al., 1993, 1996; Ruppin & Reggia, 1994). However, this
connection may prove fruitful, both for understanding the disease itself and for fostering the
development of new diagnostic and therapeutic approaches.

It is currently unknown to what extent homeostatic mechanisms, such as increasing the
synaptic area (DeKosky & Scheff, 1990; Scheff & Douglas, 2006), can completely recover
the neuronal network’s firing rate, nor whether the preservation of the firing rate by such
mechanisms entails the preservation of cognitive performance. In this study, we investigate
the link between structure, dynamics and function using a recurrent spiking neural network
model (Brunel & Hakim, 1999).

Despite their simplicity, such systems have been shown to support computations, such as
e.g. stimulus categorization, associative learning and memory, information routing and
propagation, etc. (see, e.g. Jaeger & Haas, 2004; Eliasmith & Anderson, 2004; Maass et al.,
2002; Buesing et al., 2011; Boerlin et al., 2013; Abbott et al., 2016). Additionally, although
these models have complex behavioral repertoires, they are often simple enough that their
dynamics can be assessed analytically. The stability of the dynamics can then be related to
computational task performance, such as the network’s sensitivity to perturbation (Legenstein
& Maass, 2007a,b). Thus, an analytical treatment of network dynamics can provide insight
into why some realizations of such networks perform better than others and how performance
is affected by structural changes. Theoretical studies explicitly addressing this issue have so
far focused either on the disruption of oscillations or functional connectivity of the whole
brain, or on memory only (especially memory retrieval; Horn et al., 1993, 1996; Ruppin &
Reggia, 1994).

Here, we investigate how the loss of excitatory-excitatory synapses in sparsely connected
random networks of spiking excitatory and inhibitory neurons (Sec. 4.2.1) and firing rate
homeostasis, based on upscaling the remaining excitatory-excitatory connections, alters the
dynamical characteristics of a network. Surprisingly, we find that firing rate homeostasis
can restore a variety of dynamical features caused by synaptic loss, including the increase in
spike train regularity, the drop in the fluctuations of population activity and the reduction
of the synaptic contact area (Sec. 4.2.2) caused by synaptic loss. In addition, we observe
that synaptic loss decreases the network’s sensitivity to small perturbations (Sec. 4.2.3), such
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that a network operating near the ’edge of chaos’ would be shifted by synaptic loss to a
more stable regime; a shift which has been shown in previous studies to result in a decrease
in computational capacity (Langton, 1990; Legenstein & Maass, 2007b,a; Schrauwen et al.,
2009; Dambre et al., 2012; Schuecker et al., 2017), and may account for the cognitive deficits
observed in Alzheimer’s disease. Here, too, firing rate homeostasis counteracts the shift
towards the stable regime. We further show that these compensatory mechanisms ultimately
become exhausted if physiological limits are placed on the growth of the synapse. As it is not
obvious why simply maintaining the firing rate also maintains the stability of the network,
we analyze the stability of the linearized network dynamics and discover a strictly monotonic
relationship between the firing rate and the spectral radius of the network, which explains
the restoration of the dynamics under the influence of firing rate homeostasis (Sec. 4.2.3).

4.2 Results

4.2.1 Computational network model of Alzheimer’s disease

We study the effects of AD related synaptic alterations on the network dynamics and compu-
tational characteristics in the framework of a generic mathematical neuronal network model
(Fig. 4.1 A), which captures prominent structural and dynamical features of local neocortical
networks such as the relative numbers of excitatory and inhibitory neurons (Scholl, 1956;
Abeles, 1982) and synapses (DeFelipe & Fariñas, 1992; Gulyás et al., 1999), sparse connectivity
(Abeles, 1982; Binzegger et al., 2004), small synaptic weights (Lefort et al., 2009), irregular
(Tomko & Crapper, 1974; Softky & Koch, 1993; Shadlen & Newsome, 1998) and predom-
inantly asynchronous spiking (Ecker et al., 2010), large membrane potential fluctuations
(Petersen & Crochet, 2013; Cowan & Wilson, 1994; Timofeev et al., 2001; Steriade et al., 1993),
and a tight dynamical balance between excitatory and inhibitory synaptic currents (Okun &
Lampl, 2008).

The network is composed of randomly and sparsely connected populations of excitatory
(E) and inhibitory (I) integrate-and-fire neurons, driven by external spiking input. The
overall coupling strength is determined by the reference synaptic weight J . For simplicity,
all excitatory connections (EE and IE) and all inhibitory connections (EI and II), respectively,
have equal synaptic weight: JEE = JIE = J and JEI = JII = −gJ in the intact network (i.e.
before synapse loss). The relative strength g of inhibitory weights is chosen such that the
network is dominated by inhibition, to permit asynchronous irregular firing at low rates
(Brunel, 2000). A complete specification of the network model and parameters can be found
in Sec. 4.4.1 and in the Supplementary Material (Sec. 4.5.1, Sec. 4.5.2). An illustration of the
connectivity of the excitatory population for an intact network and an example spike train is
given in Fig. 4.1 B.

We implement the effects of AD on the network connectivity by reducing the number of
excitatory synapses on excitatory neurons (EE synapses; Lacor et al., 2007; Dorostkar et al.,
2015), whilst keeping the number of connections between other populations (EI, IE, II)
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Figure 4.1: Sketch of the network model of Alzheimer’s disease and homeostasis. A) The net-
work comprises two reciprocally and recurrently connected populations of excitatory (E) and inhibitory
(I) integrate-and-fire neurons, excited by an external spiking input. Thickness of arrow indicates relative
strength of the connection. In this study, Alzheimer’s disease is modeled by removing connections between
excitatory neurons (loss of EE synapses) and upscaling of the remaining EE synapses to maintain the
average firing rate (firing rate homeostasis). B–E) Sketch of EE connection density (number of arrows in
upper panels), connection strength (thickness of arrows in upper panels) and resulting single-neuron spiking
activity (lower panels). B) Intact network (without synapse loss). C) Synapse loss without homeostasis:
removal of EE synapses and resulting reduction in firing rate. D) Synapse loss with unlimited homeostasis:
removal of EE synapses and increase in strength of remaining EE synapses to maintain the average firing
rate. Synaptic weights are allowed to grow without bounds. E) Synapse loss with limited homeostasis:
removal of EE synapses and bounded increase in strength of remaining EE synapses. Here, synaptic weights
cannot exceed 120% of their reference weight. The firing rate is therefore only partially recovered. For a
complete description and parameter specification of the network model, see Sec. 4.4.1 and Supplementary
Material (Sec. 4.5.1, Sec. 4.5.2).
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constant. In the absence of any compensation mechanism, this modification leads to a
reduction in the average firing rate (see Sec. 4.2.2).

In biological neuronal networks, long-term activity levels are often stabilized by homeostatic
regulation (Bennett et al., 2002; Turrigiano, 2008; Marder & Goaillard, 2006). While a mainten-
ance of firing rates has been observed at the level of individual neurons (Lütcke et al., 2013),
long-term recordings suggest a predominance of a network-wide regulation (Slomowitz
et al., 2015) targeting a constant population firing rate. Such a homeostatic stabilization of
the population firing rate can be accounted for by a global adjustment of synaptic weights
(synaptic scaling; Vitureira et al., 2012; Turrigiano, 2012). Indeed, in the early stages of AD,
synapse loss seems to be compensated by a growth of the remaining synapses (DeKosky &
Scheff, 1990; Scheff & Douglas, 2006; Neuman et al., 2014). To realize this mechanism in our
spiking neuronal network, we implement a firing-rate homeostasis which compensates for
the loss of EE synapses by a global increase in the weights JEE of the remaining EE synapses,
thereby preserving the population firing rate.

For advanced AD, where a large portion of the EE synapses has been lost, a full recovery
of the population firing rate through synaptic scaling would require unrealistically large
synaptic weights. During aging and dementia, the maximum increase in synaptic size has
been reported to be in the range from 9% to 24% (see Scheff & Price, 2003, and references
therein). We incorporate these findings by introducing an optional upper bound for the
weight JEE of EE synapses.

To uncover the differential effects of excitatory synapse loss and homeostasis, in this study we
investigate the dynamical and computational characteristics of a network for three different
scenarios: synapse loss without homeostatic compensation (Fig. 4.1 C), synapse loss with
an unlimited firing rate homeostasis where synaptic weights can grow without bounds
(Fig. 4.1 D), and synapse loss with limited firing rate homeostasis where the synaptic weights
cannot exceed 120% of the weight in the intact reference network (Fig. 4.1 E).

Note that the model’s high level of abstraction enables us to identify fundamental mech-
anisms, to reduce the risk of overfitting, and to arrive at general conclusions that may be
transferred to other brain regions or even different spatial scales. Empirically observed
features of biological neural networks such as heavy-tail synaptic weight distributions (Song
et al., 2005; Ikegaya et al., 2013) or active dendritic processing (Major et al., 2013) are not
explicitly incorporated. As a consequence, model parameters such as synaptic weights have
to be regarded es “effective” parameters and cannot be mapped to biological parameters in a
one-to-one fashion. Selecting a particular set of parameters to be considered "biologically
realistic" would be misleading. Therefore, rather than focusing on a specific configuration
of the model, we systematically vary both the reference synaptic weight J and the extent of
synapse loss to uncover the general relationship between these parameters and the dynamical
and computational properties of the network.
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4.2.2 Total synaptic contact area and firing statistics

In the absence of homeostatic compensation (left column of Fig. 4.2), removal of excitatory
synapses on excitatory neurons naturally results in a decrease in the population firing rate
ν, irrespective of the synaptic-weight scale J (Fig. 4.2A). An upscaling of the remaining EE
synapses (middle column) allows us to preserve the population firing rate, even if substantial
amounts of synapses are removed (vertical contours in Fig. 4.2B). If the maximum synaptic
weight is limited, firing rates are preserved only up to a critical level of synapse loss (early
stages of AD; Fig. 4.2C).

Experimental studies have shown that, in early AD, the reduction in the number of synapses
is accompanied by a growth of the remaining synapses such that the total synaptic contact
area (TSCA) per unit volume is approximately preserved (DeKosky & Scheff, 1990; Scheff &
Douglas, 2006; Neuman et al., 2014). Our simple AD network model reproduces this finding if
we define the TSCA as the product of the number of EE connections and the synaptic weight
JEE (Sec. 4.4.2). Without homeostatic upscaling of EE weights, the TSCA is proportional to the
number of EE connections and therefore quickly decreases with increasing levels of synapse
loss (Fig. 4.2G). In the presence of firing rate homeostasis, however, the TSCA remains largely
constant unless a majority of synapses is lost (Fig. 4.2H) or the maximum synaptic weight is
reached (Fig. 4.2I). We conclude that the experimentally observed stabilization of the TSCA
in the face of synapse loss may be a consequence of a homeostatic synaptic scaling regulated
by the average population firing rate.

In physiologically relevant low activity regimes, neuronal firing is determined both by
the mean as well as by fluctuations in the synaptic input. A reduction in the number of
synapses followed by an upscaling of synaptic weights may preserve the average population
firing rate; it cannot, however, simultaneously preserve the mean and the variance of the
synaptic input currents. The neurons’ working point, i.e. the statistics of the synaptic input,
will inevitably change. A priori, it is therefore not clear to what extent synapse loss and
firing rate homeostasis alter the overall firing statistics in the recurrent network beyond the
average firing rate. Here, we address this question by studying the irregularity of spike
generation by individual neurons, measured by the coefficient of variation CV of the inter-
spike interval distribution, and spike-train synchrony, assessed by the normalized variance
of the population spike count, the Fano factor FF, in 10ms time intervals (see Sec. 4.4.2).
Without homeostatic compensation, synapse loss generally results in spike patterns that
are less irregular (Fig. 4.3A) and less synchronous (Fig. 4.3D). In the presence of firing rate
homeostasis, however, both the CV and the FF are largely preserved (Fig.fig:statsplotsB,E).
Only if the level of synapse loss becomes too severe or if the synaptic-strength limits are
reached (limited homeostasis), the CV and the FF are reduced (Fig. 4.3B,C and Fig. 4.3E,F).

For illustration, Fig. 4.4 depicts the spiking activity for four example parameter settings
marked by the symbols in Fig. 4.2 and Fig. 4.3. As Fig. 4.3 E and H already suggest, the
overall spiking activity, e.g the number and the duration of synchronous event and the
spiking frequency of single neurons, of the homeostatic network (Fig. 4.4 C) and the reference
network (Fig. 4.4 A) are very similar. Only the exact timing of the synchronous events and the
single neuron spiking differ. In the AD network without homeostasis (Fig. 4.4 B), the firing
rates of both excitatory and inhibitory neurons are decreased. The number of synchronous
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Figure 4.2: Effect of synapse loss and firing rate homeostasis on firing rate, synaptic weights
and total synaptic contact area. Dependence of the time and population averaged firing rate ν (A–C),
synaptic weight JEE (D–F) and the relative total synaptic contact area (TSCA) of EE synapses (G–I) on
the reference weight J and the degree of EE synapse loss in the absence of homeostatic compensation
(left column), as well as with unlimited (middle column) and limited firing rate homeostasis (right column).
Color-coded data represent mean across 10 random network realizations. Symbols mark parameter config-
urations shown in Fig. 4.4.

events, compared with the reference network (Fig. 4.4 A), does not seem to be decreased, but
their duration does. The network with limited homeostasis (Fig. 4.4 D) is more similar to
the AD network without homeostasis than the unlimited homeostasis networks, because the
restriction in synaptic growth prevents the rate from being recovered.

4.2.3 Perturbation sensitivity and linear stability

An open, yet chronically ignored, question in Alzheimer’s disease research is how cellular
damage such as synapse loss affects patients’ cognitive capabilities. A number of theoret-
ical studies have shown that recurrent neuronal networks exhibit optimal computational
performance characteristics for a variety of task modalities if they operate in a dynamical
regime where small perturbations are neither instantly forgotten nor lead to entirely different
network states (Langton, 1990; Legenstein & Maass, 2007b,a; Schrauwen et al., 2009; Dambre
et al., 2012; Schuecker et al., 2017). In dynamical systems theory, this regime has been termed
the “edge of chaos” as it represents the transition from a stable state with a low sensitivity
to small perturbations to a chaotic state where the sensitivity to small perturbations is high.
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Figure 4.3: Effect of synapse loss and firing rate homeostasis on spike train statistics. Dependence
of the coefficient of variation CV of inter-spike intervals (A–C) and the Fano factor FF of the population
spike count (binsize b = 10ms; D–F) on the synaptic reference weight J and the degree of EE synapse
loss in the absence of homeostatic compensation (left column), as well as with unlimited (middle column)
and limited firing rate homeostasis (right column). Color-coded data represent mean across 10 random
network realizations. Symbols mark parameter configurations shown in Fig. 4.4.

Figure 4.4: Effect of synapse loss and firing rate homeostasis on spiking activity. Spiking activity
(dots mark time and sender of each spike) in an intact reference network (no synapse loss, JEE = 1.4mV;
A), as well as in networks where 30% of the EE synapses are removed: B) no homeostasis (JEE = 1.4mV),
C) unlimited homeostasis (JEE = 2.02mV), D) limited homeostasis (JEE = 1.68mV). In all panels,
the synaptic-weight scale is set to J = 1.4mV. Examples depict parameter configurations marked by
corresponding symbols in Fig. 4.2 and Fig. 4.3 (cf. marker in lower right corner of each panel). Regions
below and above the gray horizontal line show spiking activity of a subset of 100 excitatory and 25 inhibitory
neurons, respectively.
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Figure 4.5: Perturbation sensitivity. Top: Example spiking activity (dots mark time and sender of
each spike) of two identical networks (identical neuron parameters, connectivity, external input, initial
conditions) with (black dots) and without perturbation (purple dots). The perturbation consists in delaying
one external input spike at time t∗ = 400 ms by δt∗ = 0.5 ms. The vertical red line marks the time of
the perturbation. Spikes of only 10% of all neurons are shown. Neurons below and above the horizontal
gray line correspond to excitatory and inhibitory neurons, respectively. Bottom row: Perturbation sensitivity
S(t) = 1−|R(t)| obtained from the correlation coefficient R(t) of the low-pass filtered spike trains generated
by the unperturbed and the perturbed network (black and purple dots in top panels; see Methods Sec. 4.4.2).
A) Stable dynamics (J = 0.45mV, KEE = 100). B) Chaotic dynamics (J = 1.75mV, KEE = 100). Note
different time scales in A and B.

Here, we investigate the role of synapse loss and firing rate homeostasis for the network’s
sensitivity to perturbations as an indicator of its overall computational performance.

To assess the perturbation sensitivity, we simulate a given network twice with identical initial
conditions and identical realizations of external inputs. In the second run, we apply a small
perturbation by delaying one of the external input spikes to a single neuron by a fraction
of a millisecond (Fig. 4.5). In stable regimes, the effect of this perturbation on the spiking
response is transient and quickly vanishes (Fig. 4.5 A, top). In chaotic regimes, in contrast,
the small perturbation leads to diverging spike patterns (Fig. 4.5 B, top). We quantify the
network’s perturbation sensitivity S = 1−|R| in terms of the long-term correlation coefficient
R between the low-pass filtered spike responses in the two runs (Fig. 4.5, bottom). With this
definition, S = 0 and S = 1 correspond to insensitive (stable) and highly sensitive (chaotic)
networks, respectively (for details, see Sec. 4.4.2).

For small synaptic weights J , the network dynamics is always stable (S = 0) for our choice
of parameters, irrespective of the degree of synapse loss and the absence or presence of
homeostatic compensation (Fig. 4.6). In this regime, the perturbation has no long-term effect:
after a transient phase, the response spike patterns in the perturbed and the unperturbed
simulation are exactly identical (at the temporal resolution ∆tf = 1ms of the recorded signals).
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The intact networks (zero synapse loss) enter a chaotic regime (S > 0) if the synaptic weights
J exceed a certain critical value. Removal of EE-synapses without homeostatic compensation
leads to a shift of this transition towards larger synaptic weights (Fig. 4.6 A). Networks in the
chaotic regime eventually become insensitive to perturbations with progressing EE-synapse
loss. In the presence of firing rate homeostasis, in contrast, the perturbation sensitivity
is preserved (color gradient in Fig. 4.6 B is predominantly left to right, rather than top to
bottom). Unless the homeostatic strengthening of EE-synapses is limited (limited homeostasis;
Fig. 4.6 C), this maintenance of the perturbation sensitivity is observed even if the degree of
synapse loss is substantial (> 80%).

We conclude that synapse loss, as observed in Alzheimer’s disease, tends to reduce the
perturbation sensitivity of the affected networks, and may thereby impair their computational
performance for a broad range of task modalities. Homeostatic mechanisms that preserve the
average network activity (firing rate) can prevent this reduction in sensitivity and, hence, the
decline in computational capability.

Figure 4.6: Effect of synapse loss and firing rate homeostasis on perturbation sensitivity. Depend-
ence of perturbation sensitivity S on the synaptic reference weight J and the degree of EE synapse loss in
the absence of homeostatic compensation (A), as well as for unlimited (B) and limited firing rate homeo-
stasis (C). Color-coded data represent mean across 10 random network realizations. Superimposed black
and gray curves mark regions where the linearized network dynamics is stable (gray dashed; spectral radius
ρ = . . . , 0.6, 0.8), about to become unstable (black; ρ = 1), and unstable (gray solid; ρ = 1.2, 1.4, . . .).
Pink symbols mark parameter configurations shown in Fig. 4.2 and Fig. 4.4.

So far, the reported results on the perturbation sensitivity were obtained by network simula-
tions for a specific set of parameters. In the following, we employ an analytical approach;
firstly, to show that our findings are general and do not depend on the details of the net-
work model, and secondly, to shed light on the mechanisms underlying the reduction in
perturbation sensitivity by synapse loss and its maintenance by firing rate homeostasis.

As shown in Sompolinsky et al. (1988), the dynamics of large random networks of analog
nonlinear neurons without (or with constant) external input undergoes a transition from
a stable to a chaotic regime at some critical synaptic coupling strength. The study further
revealed that this transition coincides with a critical point where the local linearized network
dynamics becomes unstable. For more realistic networks of spiking neurons, networks with
fluctuating external input or networks with a more realistic connectivity structure, a strict
correspondence between the onset of chaotic dynamics and linear instability could not be
established (Ostojic, 2014; Engelken et al., 2015; Ostojic, 2015; Kadmon & Sompolinsky, 2015;
Harish & Hansel, 2015; Schuecker et al., 2017). Nevertheless, various previous studies suggest
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that the two transition types are interrelated, in the sense that a change in the linear stability
characteristics is accompanied by a change in the network’s sensitivity to small perturbations.

Here, we propose that the linear stability characteristics can serve as an indirect and easily
accessible indicator of the network’s sensitivity to small perturbations, and hence its compu-
tational capability. As described in Sec. 4.4.3, the linearized network dynamics is determined
by the effective connectivity matrix W . Its components wij = Wij (i, j ∈ {1, . . . , N}) measure
the effect of a small fluctuation in the firing rate νj(t) of a presynaptic neuron j on the rate
νi(t) of the postsynaptic neuron i at a specific working point determined by the stationary
firing rates ν = (ν1, . . . , νN ). The effective connection weights are hence determined not only
by the synaptic weights Jij , but also by the excitability of the target cell i, which is in turn
determined by the statistics of the synaptic input fluctuations, i.e. the dynamical state of the
local network. The linearized dynamics becomes unstable if the spectral radius ρ = Re(λmax),
the real part of the maximal eigenvalue λmax of W , exceeds unity.

Loss of EE synapses corresponds to setting a fraction of the excitatory components wij

(i, j ∈ E) to zero. In the absence of homeostatic compensation, we expect this weakening
of positive feedback to have a stabilizing effect. The dependence of the effective weights
wij on the working point, however, leads to a non-trivial effect of synapse loss and firing
rate homeostasis on the spectral radius ρ. Here, we compute ρ by employing the diffusion
approximation of the leaky integrate-and-fire neuron and random-matrix theory (for details,
see Sec. 4.4.3).

As shown in Fig. 4.6 (black and gray curves), the linear stability characteristics (as measured
by the spectral radius ρ) bear striking similarities to the sensitivity to perturbations. In the
absence of homeostasis, loss of EE synapses leads to a fast decrease in ρ. Linearly unstable
networks quickly become stable (Fig. 4.6 A). Firing rate homeostasis, in contrast, preserves
the spectral radius ρ, even if a substantial fraction of EE synapses is removed. Linearly
unstable networks remain unstable (Fig. 4.6 B), until the homeostatic resources are exhausted
(Fig. 4.6 C).

The analytical approach described in Sec. 4.4.3 provides us with an intuitive understanding
of why and under what conditions firing rate homeostasis preserves the linear stability
characteristics in the face of synapse loss. The analysis shows that, in the presence of firing-
rate homeostasis, the spectral radius ρ is uniquely determined by the stationary average
firing rate (red curves and symbols in Fig. 4.7B and eq.4.17). For the parameters chosen in
this study, an approximately unique dependence on the firing rate is also observed in the
absence of homeostasis and for limited homeostasis (blue and yellow curves in Fig. 4.7B).
Network simulations reveal similar findings for the perturbation sensitivity S (Fig. 4.7A). For
unlimited homeostasis, the firing rate, the perturbation sensitivity and the spectral radius
remain (approximately) constant during synapse loss (red curves in Fig. 4.7). In the absence
of homeostasis or for limited homeostasis, firing rates change; the corresponding spectral
radii ρ and perturbation sensitivities S nevertheless remain within a narrow band (bue and
yellow curves in Fig. 4.7). The number KEE and the strength JEE of EE synapses therefore
play only an indirect role by determining the stationary firing rate ν. Any combination of
KEE and JEE that preserves ν will simultaneously preserve ρ (and S).
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The unique dependence of the spectral radius ρ on the firing rate ν is a consequence of the
working-point dependence of the effective weights wij ≈ η(νi)Jij/σi, where η(νi) is a function
of the firing rate νi of the target neuron i (see eq. 4.15). To maintain the stationary firing rate
νE of excitatory neurons, the synaptic weights JEE are increased to compensate for the loss of
excitatory synapses, i.e. for the decrease in the number KEE of excitatory inputs. This increase
in the synaptic weights Jij (for neurons i, j both in the excitatory population) is accompanied
by an increase in the variance σ2

i of the synaptic input received by the target neuron i. If the
response firing rate νi is kept constant (as is the case in the presence of firing rate homeostasis),
an increase in σi leads to a decrease in neuron i’s sensitivity to a modulation of the input
current caused by a spike of the source neuron j. This interplay between an upscaling of the
weights Jij and a downscaling of the neuron’s modulation sensitivity restricts the growth in
the effective weight wij , and, ultimately, leads to a preservation of the spectral radius ρ. In
Sec. 4.4.3, we demonstrate this effect for a homogeneous network of leaky-integrate-and-fire
neurons. The derivation relies on the assumption that the synaptic weights are sufficiently
small and the rate of synaptic events is high (diffusion approximation), that the stationary
firing rates νE and νI of excitatory and inhibitory neurons are identical (homogeneity), and
that the input fluctuations caused by external sources are small compared to those generated
by the local network.

Figure 4.7: Firing rate as predictor of perturbation sensitivity and linear stability. Dependence of the
perturbation sensitivity S (A; simulation results) and the linear stability quantified by the spectral radius
ρ (B; theory) on the mean stationary firing rate νE of the excitatory neuron population in the absence of
homeostasis (blue), as well as for unlimited (red) and limited firing rate homeostasis (yellow). Each curve
depicts data for a fixed reference weight J ∈ {0, . . . , 3} mV and various degrees of synapse loss from 0%
to 50% (vertical paths in Fig. 4.6 and Fig. 4.8). For unlimited homeostasis, the firing rate and the spectral
radius are nearly perfectly conserved while removing synapses. In B), the red curves are therefore too short
to be visible. Circles depict results for 0% synapse loss. Same data as in Fig. 4.6 and Fig. 4.8 D–F and
M–O.

4.3 Discussion

In this article, we study the effect of Alzheimer’s disease on the dynamics and perturba-
tion sensitivity of recurrent neuronal networks. To this end, we employ a computational
model of a generic neuronal network composed of excitatory and inhibitory spiking neur-
ons. Alzheimer’s disease is implemented in the form of a loss of excitatory synapses on to
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excitatory neurons. The resulting decrease in the firing rate is avoided (or retarded) by firing
rate homeostasis, which is achieved by increasing the weights of the remaining excitatory-
excitatory (EE) synapses. In one scenario, we allow synaptic weights to grow without bounds;
in another, to ensure that they stay within the physiological range (Scheff & Douglas, 2006),
we limit the maximum synaptic weight during homeostasis to 120% of the reference weight
in the intact network (i.e. before synapse loss).

We show that, in the absence of homeostatic compensation, a progressive loss of EE synapses
not only reduces the average firing rate, but also leads to an increase in spike train regularity
and a decrease in the fluctuations of the population activity. At first glance, the reduction in
firing rate appears to be in contrast with the observation that the network activity of early
affected areas (e.g. hippocampus) is enhanced (Mendez et al., 1994; Amatniek et al., 2006; Lam
et al., 2017). However, this hyperactivity is mostly reported in very early preclinical disease
stages, in which increasing oligomeric Amyloid-beta (Aβ) accumulates (Hall et al., 2015).
Aβ oligomers seem to enhance the occurence of phosphorylated tau in spines (for review
see Tampellini, 2015), causing a degradation of excitatory-excitatory connections (Merino-
Serrais et al., 2013). This might be the reason why during later disease stages, in which the
tau-pathology becomes more prominent, the network activity decreases as predicted by our
model (see, e.g., Dickerson et al., 2005; O’Brien et al., 2010; Herholz, 2010; Busche et al., 2012).

According to our AD model, the decrease in firing rate in more advanced disease stages
can be delayed by homeostatic synaptic scaling. Moreover, our model predicts that as long
as the homeostatic mechanisms are able to restore the network’s firing rate, the CV and
Fano factor are also preserved. Once these mechanisms are exhausted in the later disease
stages, our model predicts that the spike train regularity increases and the fluctuations in
the population activity decrease. That a weakening of synaptic coupling decreases the CV
has also been found in other computational studies (Ostojic, 2014; Kriener et al., 2014); an
experimental investigation of the evolution of activity statistics in AD animal models has, to
our knowledge, yet to be performed.

In addition to the effects on the activity statistics, we demonstrate that the loss of synapses
results in a reduction of the network’s sensitivity to small perturbations, which goes hand in
hand with an increase in linear stability. In the presence of unlimited firing rate homeostasis,
the perturbation sensitivity, as well as all other dynamical network characteristics are pre-
served, even if the extent of synapse loss is substantial. In addition to the dynamical features,
the total synaptic contact area, which is decreased in the AD network due to synapse loss,
is largely retained. If the homeostatic synapse growth is limited, the network dynamics as
well as the total synaptic area are preserved as long as the firing rate can be maintained.
Beyond this point, the network quickly approaches the state of the pathological AD network
without homeostasis. The effectiveness of homeostatic compensation investigated in this
study provides a possible explanation for why morphological disease-related changes in the
brain (e.g. synapse loss) precede any clinically recognizable cognitive deficits by years or
even decades (Morris, 2005). That homeostasis is able to recover all network characteristics is
non-trivial, because in the homeostatic network with few but strong EE synapses, the statist-
ics of the synaptic input (mean and variance) is altered with respect to the intact reference
network with many weak EE synapses.
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In order to investigate this observation further, we analyze the linear stability characteristics of
the network and find a unique dependency of the network’s spectral radius on the network’s
firing rate under unlimited homeostasis. Previous theoretical studies have shown that simple
recurrent neuronal networks exhibit optimal computational performance for a variety of
tasks if they operate in a regime where small perturbations are neither amplified nor instantly
forgotten, i.e. close to the edge of chaos (Langton, 1990; Legenstein & Maass, 2007b,a;
Schrauwen et al., 2009; Dambre et al., 2012; Schuecker et al., 2017). Here, we regard the
network’s sensitivity to a small perturbation as an indicator of its computational performance
in a broad sense. Assuming that a healthy network acts close to the edge of chaos, our results
suggest that the EE-synapse loss observed in AD moves the dynamics of the network away
from that point towards a less sensitive regime with stable dynamics.

This key prediction of our study can be tested experimentally in animal models by analyzing
time series of recorded neuronal activity. The degree of chaoticity can be revealed by the ap-
plication of metrics such as the power spectrum, autocorrelation function, fractal dimension,
Lyapunov’s exponent (for review see Golovko et al., 2002; Beggs & Plenz, 2003; Kriener et al.,
2014), and the analysis of neuronal avalanches (Friedman et al., 2012; Kriener et al., 2014;
Beggs & Plenz, 2003).

Whereas our analysis accounts for why the sensitivity to perturbation recovers under unlim-
ited homeostasis, it is notable that the coefficient of variation and the Fano factor of the spike
trains are also preserved, suggesting a relationship between the transition from the stable to
the chaotic regime and these two network activity characterizations. It has previously been
proposed that the transition in spiking neuronal networks from the homogeneous asynchron-
ous state (small sensitivity to perturbation and small CV) to the heterogeneous asynchronous
state (high sensitivity to perturbation and high CV) of spiking networks is equivalent to the
point where analogous rate networks become chaotic (Ostojic, 2014; Wieland et al., 2015).
Such a relationship would also explain our observation that the maintenance of the stability
of the linearized network dynamics coincidences with the maintenance of the CV.

Our results raise the question of why a shift towards more stable dynamics would be dis-
advantageous for the system. A network that is insensitive to perturbation in the input is
prone to fading memory (changes in the external input are fast forgotten, see, e.g., Boyd &
Chua 1985; Bertschinger & Natschläger 2004). Such networks are likely to be less flexible in
responding to new inputs and thus harder to train than networks with chaotic dynamics.
(see FORCE learning and liquid state computing; Sussillo & Abbott, 2009; Maass et al., 2002).
On the other hand, insensitivity to small perturbations makes the system less susceptible to
disruption by noise and is a prerequisite for the formation of stable attractors, which have
been frequently used as memory storage embodiment in neuronal networks. (e.g., Li et al.,
2015). However, more recent recordings in prefrontal and association cortices revealed that
single cells exhibit complex and variable dynamics with respect to stimulus representation
(Jun et al., 2010), which neither supports the hypothesis of stable attractors nor points to a
network dynamics in the stable regime. Computational studies that have investigated the
memory capacity whilst taking heterogeneous neural dynamics into account have found that
memory formation succeeds well in a chaotic regime (Pereira & Brunel, 2018; Barak et al.,
2013) or with an embedding of stable subspaces in chaotic dynamics (Murray et al., 2017). In
addition, the construction of associative memory based on unstable periodic orbits of chaotic
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attractors has been suggested as a possible way of increasing memory capacity (Wagner &
Stucki, 2002). Thus, stable attractors and dynamics are not in line with experiments and
might even be disadvantageous for memory formation.

On the cognitive level, these results suggest that, as homeostatic compensation mechanisms
begin to fail, the shift of dynamics towards the stable regime would cause a decrease in
performance within a variety of domains. For example, deficits in memory, known to
primarily affect recent experiences of the AD individual, could be accounted for by the
hypothesis that chaotic dynamics are needed to form new attractors (Barak et al., 2013). In
addition, very stable dynamics hinder the transition from one attractor to another, which
might explain the difficulties of AD patients to perform tasks switching and dual task
processing (Belleville et al., 2008; Baddeley et al., 2001). Finally, the observation that AD
patients often show repetitive speech and actions (Cullen et al., 2005) might be explained by
difficulties in moving away from the corresponding attractor state.

So far, only a few other studies on this abstraction level exist that investigate the relationship
of the physical symptoms of Alzheimer’s disease to its cognitive deficits. With respect
to memory, the effect of synapse loss and compensation through maintaining the TSCA
has been investigated in a associative memory model (Ruppin & Reggia, 1994; Horn et al.,
1993, 1996). In accordance with our results, the impairment of memory retrieval due to
(excitatory) synapse loss was shown to be successfully compensated by restoring the TSCA, if
the restoration occurs sufficiently quickly. The effect of the restoration on the firing rate was
not explicitly shown. Although these studies demonstrated that homeostasis via upscaling
synapses can retain memory performance, they lack a systematic investigation of different
network parameters and do not provide an analytical explanation for the results.

Apart from AD-related computational studies, the computational consequences of intrinsic
and synaptic scaling-based, homeostasis has been investigated in previous studies as response
to changes in the external input (Naudé et al., 2013; Fröhlich et al., 2008). Based on a rate
network, it has been demonstrated that intrinsic homeostasis, which shifts the neurons’
transfer functions, moves the network dynamics towards the chaotic regime, stabilizes
network activity in the present of Hebbian synaptic plasticity and improves input separability
in response to an increasing external input (Naudé et al., 2013). With respect to EE-synaptic
scaling, the empirical study by Fröhlich et al. (2008) showed that if the deafferentation of the
external input exceeds a certain threshold, slow periodic oscillations occur, which are also
observed in several CNS disorders. It is not possible to directly compare these results to our
findings, since in both studies it is changes in the external input, and not the loss of recurrent
connections in the network, that triggers the homeostasis response. However, both studies
are in accordance with ours on the beneficial role of the homeostasis.

We complement our numerical results by an analytical approach to gain an intuitive under-
standing of the mechanisms underlying the recovery of the perturbation sensitivity (and
hence, computational performance) by firing rate homeostasis. To study the linear stability
characteristics of the network, we apply mean-field theory, similar to the approach used
by Ostojic (2014). Note that we do not claim that a loss of linear stability coincides with
the transition from stable to chaotic dynamics (Engelken et al., 2015; Ostojic, 2015; Kadmon
& Sompolinsky, 2015; Harish & Hansel, 2015; Schuecker et al., 2017), as observed in large
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autonomous random networks of analog neurons (Sompolinsky et al., 1988). Rather, we
exploit that the linear stability characteristics follow a similar trend as the perturbation sens-
itivity. Assessing the linear stability characteristics relies on the knowledge of the effective
connection strengths, i.e. the number of excess response spikes evoked by an additional
input spike in the presence of synaptic background activity. This effective connectivity can
be obtained experimentally (see, e.g., Boucsein et al., 2009; London et al., 2010), or, for a
specific neuron and synapse model, numerically (see, e.g., Nordlie et al., 2010; Heiberg et al.,
2013, 2018). For simplified models, such as the leaky integrate-and-fire neuron studied here,
it can be calculated analytically under simplifying assumptions (diffusion approximation;
Fourcaud & Brunel, 2002; Schuecker et al., 2015). However, we note that the preservation
of linear stability by firing-rate homeostasis is due to the approximately exponential shape
of the gain function. It remains to be investigated whether our results can be generalized to
other types of neurons with different gain functions. Our theoretical analysis exposes the
working-point dependence of the effective weights as the essential mechanism underlying
the recovery of linear stability by firing rate homeostasis: on the one hand, the upscaling of
EE synaptic weights required for maintaining the firing rates contributes to a destabilization
of the network dynamics. On the other hand, the increase in synaptic weights leads to an
increase in the variance of the synaptic-input fluctuations, which, in turn, reduces the neur-
ons’ susceptibility to modulations in the presynaptic input, and therefore stabilizes network
dynamics. Note that a similar effect has been described in (Grytskyy et al., 2013).

The present study shows that certain cognitive deficits in Alzheimer’s disease may be attrib-
uted to changes in the stability characteristics of neuronal network dynamics. Its central aim
is to contribute a deeper insight into the relationship between disease related alterations at
the structural, the dynamical and the cognitive level. The findings of this study are however
also applicable in an entirely different context: in the face of limited computational resources,
neuronal network models are often downscaled by reducing the number of nodes or the
number of connections while increasing their strength. This downscaling has limitations if
dynamical features such as the temporal structure of correlations in the neuronal activity
are to be maintained (van Albada et al., 2015). The present work demonstrates that cer-
tain functional characteristics such as the sensitivity to perturbations or the classification
performance can be largely preserved, if the synaptic weights are not limited by biological
constraints. This insight may be particularly relevant for cognitive-computing applications
based on recurrent neuronal networks implemented in neuromorphic hardware (Furber,
2016). Here, the realization of natural-density connectivity and communication constitute a
major bottleneck, whereas the strength of connections is hardly limited.

The results reported in this study are based on a model of AD where synapse loss and synaptic
scaling are confined to connections between excitatory neurons (EE). The motivation for
restricting our investigation to the loss of EE connections is that this appears to be a prominent
feature in many cortical areas (Lacor et al., 2007; Merino-Serrais et al., 2013; Dorostkar et al.,
2015). Evidence that other types of synapses are also damaged in the course of the disease has
been gathered from several mouse models. For example, inhibitory synapses from neurons
in the entorhinal cortex to excitatory CA1 hippocampal have been found to be selectively
degenerated in AD mice (Yang et al., 2016). Our mean field theoretical results suggest that
a global unspecific synapse loss affecting all types of connections (EE, EI, IE, II) leads to
noticeable changes in firing rates and linear stability characteristics, but only for higher levels
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of synapse loss (more than 50%; see Supplements Sec. 4.5.4). In this scenario, a recovery of
firing rates by a synapse unspecific scaling of synaptic weights largely preserves the linear
stability characteristics, similar to our findings obtained for a EE-synapse loss and EE-synapse
scaling. This suggests that the commonly reported scaling of EE-synapses may well be a
mechanism the brain employs to compensate for alterations in dynamical characteristics that
are induced by other types of synapse loss.

Although synapse loss correlates best with the cognitive decline observed in AD, by focusing
on this aspect, the current study neglects other physical manifestations of AD such as neuron
death and alterations of intrinsic neuronal properties (Hoxha et al., 2012; Haghani et al.,
2012; Liu et al., 2013; Corbett et al., 2013; Eslamizade et al., 2015). These phenomena would
affect both inhibition and excitation in the network, so the changes of the resulting firing
rate may well be non-monotonic, unlike in our model, having unpredictable effects on
the the computational properties. Alternatively, they might be entirely unaffected: in a
computational study, Barrett et al. (2016) showed that under some circumstances, a network
can compensate for neuron loss without the need for additional homeostasis mechanisms
by adjusting neuronal transfer functions. The contribution of intrinsic neuron contributions
to the claimed hyperexcitability of inhibitory neurons observed in AD has been previously
investigated in a computational study by Perez et al. (2016). Whereas the interplay of such
properties with synaptic loss and homeostasis are out of scope of the current work, our model
could be extended to incorporate these aspects. However, there is as yet no consensus on
which cell type shows hyperactivity (Zilberter et al., 2013) or hypoactivity (Yun et al., 2006);
which moreover may vary over the course of the disease (Busche et al., 2012; Orbán et al.,
2010).

Analogously to our focus on synaptic loss to EE connections, we also restricted our investiga-
tion of firing rate homeostasis to EE-synapse growth. This is motivated by the findings that
intense synaptic upscaling is observed in AD and that an increase of excitatory-excitatory
connections has been reported as a main compensation mechanism that increases the firing
rate in hippocampal and cortical neurons after an artificially induced decrease in activity
(e.g. by blocking sodium channels (TTX) or glutamatergic synapses or AMPAR) (Lissin et al.,
1998; O’Brien et al., 1998; Turrigiano et al., 1998; Watt et al., 2000; Thiagarajan et al., 2005;
Ibata et al., 2008; Kim & Tsien, 2008). Other mechanisms that increase the network’s firing
rate could also be considered, e.g. changes in current flow of ions (e.g. Desai et al., 1999;
Gibson et al., 2006) or moving the spike-initiation zone (Grubb & Burrone, 2010). In order to
understand the complexity of Alzheimer’s disease it is important to study the effects of the
different observed morphological alterations caused by AD, their corresponding homeostatic
responses and, crucially, how they interfere with each other.

The findings of our study suggest that homeostatic synaptic scaling might be an attractive
target for drug development. However, some caution is required. Firstly, as discussed
above, during early AD the neuronal activity seems to be increased, followed by a decrease.
Thus, enhancing EE-synaptic scaling at the very beginning of AD manifestation could even
accelerate the progression of the disease. In the later stages of the disease, supporting synaptic
scaling might be beneficial, stabilizing the cognitive performance. Within this context, there
are a variety of molecular substrates that regulate synaptic scaling, and which show altered
expression patterns in AD, that could be considered as treatment targets, for example MSK1,
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PSD-95, BDNF, Arc, Calcineurin, CaMK4 and Cdk5 (for reviews see Jang & Chung 2016). A
major challenge is to determine whether the altered concentrations of these substrates are
a consequence of direct AD pathology, or arise as an attempt of the organism to counteract
pathology, or even a mixture of both. Thus, in addition to more comprehensive modelling
investigations, further research on the exact time line of morphological changes and their
functional implications is needed to identify promising therapeutic targets.

4.4 Methods

4.4.1 Network model

The network consists of N = NE +NI identical leaky integrate-and-fire neurons, subdivided
into a population of NE = 1000 excitatory and a population of NI = NE/4 inhibitory neurons.
In the intact reference network, each excitatory (inhibitory) neuron receives local excitatory
inputs from KEE = ϵNE (KIE = ϵNE) randomly selected excitatory neurons, and inhibitory
inputs from KEI = ϵNI (KII = ϵNI) randomly selected inhibitory neurons. In addition, the
neurons in the local circuit are driven by external excitatory inputs modeled as an ensemble of
p Poissonian spike trains with constant rate νX. Each of these external spike trains is sent to a
subset of Kout

X randomly selected (excitatory and inhibitory) neurons in the network. Synaptic
interactions are implemented in the form of stereotype exponential postsynaptic currents with
a time constant τs. The strength Jij of interaction between two neurons j and i, the synaptic
weight, is parameterized by the amplitude of the postsynaptic potential of neuron i evoked
by an incoming spike from neuron j. In the reference network, all excitatory connections
and all inhibitory connections, respectively, have equal synaptic weights, i.e. JEE = JIE = J
and JEI = JII = −gJ . The greater number of excitatory inputs is compensated by a larger
amplitude of inhibitory synaptic weights (g = 6).

AD is implemented by a systematic removal of excitatory synapses to excitatory neuron
(EE synapses), i.e. by a reduction in the in-degree KEE. All other in-degrees (KIE, KEI, KII)
are preserved. In the presence of firing-rate homeostasis, the removal of EE connections is
compensated by increasing the weights JEE of the remaining EE synapses such that the time
and population averaged firing rate ν = (NT )−1

∑N
i=1

∫ T
0 dt si(t) is preserved. Here, si(t)

denotes the spike train generated by neuron i (see below), and T = 1 s the simulation time.
The upscaling of the EE weights JEE is performed through bisectioning with an initial weight
increment ∆JEE = JEE. The algorithm is stopped once the population averaged firing rate ν
matches the rate of the corresponding intact reference network up to a precision of 0.5%. In
the case of limited homeostasis, JEE is set to 1.2J if the solution of the bisectioning exceeds
120% of the reference weight J . The weights JIE, JEI and JII of all other connections are not
changed by the firing-rate homeostasis.

Unless stated otherwise, the network simulations are repeated for M = 10 random real-
izations of network connectivity, initial conditions and external inputs for each parameter
configuration. A detailed description of the network model components, dynamics and
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parameters is given in the Supplementary Material (Sec. 4.5.1 and Sec. 4.5.2). Simulations
were performed using NEST version 2.10.0.

4.4.2 Synaptic contact area and characterization of network activity

Relative total synaptic contact area We calculate the total synaptic contact area (TSCA) of
the EE synapses as the product JEEKEE of the EE weight JEE and the EE in-degree KEE. The

relative TSCA =
KEEJEE

KEE
refJ ref

EE

(4.1)

is given by the ratio of the TSCA of the neurodegenerated network (reduced in-degree
KEE) and the TSCA of the corresponding intact reference network (full in-degree KEE) with
identical weights JIE, JEI and JII.

Spiking activity We represent the spike train si(t) =
∑

k δ(t − ti,k) of neuron i (i ∈ [1, N ])
as the superposition of Dirac-delta functions centered about the spike times ti,k (k = 1, 2, . . .).
The spike count ni(t; b) is given by the number of spikes emitted in the time interval [t, t+ b].
For subsequent analyses, we further compute the low-pass filtered spiking activity xi(t) =
(si ∗ h) (t) of neuron i as the linear convolution of its spike train si(t) with an exponential
kernel h(t) = exp (−t/τf)Θ(t) with time constant τf and Heaviside step function Θ(t).

Average firing rate The time and population averaged firing rate ν = (NT )−1
∑N

i=1 ni(0;T )

is given by the total number
∑N

i=1 ni(T ) of spikes emitted in the time interval [0, T ], normal-
ized by the network size N and the observation time T = 10 s.

Fano factor As a global measure of spiking synchrony, we employ the Fano factor

FF(b) =
Vart(n(t; b))
⟨n(t; b)⟩t

(4.2)

of the population spike count n(t; b) =
∑N

i=1 ni(t; b) for a binsize b = 10ms. ⟨n(t; b)⟩t and
Vart(n(t; b) denote the mean and the variance of the population spike count n(t; b) across time,
respectively. Here, we exploit the fact that the variance of a sum signal n(t) is dominated
by pairwise correlations between the individual components ni(t), if the number N of
components is large (see, e.g., Harris & Thiele, 2011; Tetzlaff et al., 2012). Normalization
by the mean ⟨n(t; b)⟩t ensures that FF(b) does not trivially depend on the firing rate or the
binsize b. For an ensemble of N independent realizations of a stationary Poisson process,
FF(b) = 1, irrespective of b and the firing rate. In this work, an increase in FF indicates an
increase in synchrony on a time scale b.
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Coefficient of variation The degree of spiking irregularity of neuron i is quantified by the
coefficient of variation CVi = SDk(τi,k)/ ⟨τi,k⟩k of the inter-spike intervals τi,k = ti,k − ti,k−1,
i.e. the ratio between the standard deviation SDk(τi,k) and the mean ⟨τi,k⟩k. For a stationary
Poisson point process, CVi = 1, irrespective of its firing rate. CV’s larger (smaller) than
1 correspond to spike trains that are more (less) regular than a stationary Poisson process.
We measure CVi over a time interval T = 10 s, and report the population average CV =

N−1
∑N

i=1 CVi.

Sensitivity to perturbation We examine the sensitivity of a network to a small perturbation
in the input spikes by performing two simulations with identical initial conditions and
identical realizations of external inputs. In the second run, we apply a small perturbation
by delaying one spike in one external Poisson input at time t∗ = 400ms by δt∗ = 0.5ms. As
a measure of the network’s perturbation sensitivity, we compute the Pearson correlation
coefficient

R(t) =
⟨δxi(t)δx∗i (t)⟩i√

⟨δxi(t)2⟩i ⟨δx∗i (t)2⟩i
(4.3)

of the low-pass filtered spike responses xi(t) and x∗i (t) in the unperturbed and perturbed
simulation, respectively, for each time point t. Here, δxi(t) = xi(t) − ⟨xi(t)⟩i denotes the
deviation of the low-pass filtered spike response xi(t) of neuron i from the population
average ⟨xi(t)⟩i. ⟨. . .⟩i = N−1

∑N
i=1 . . . represents the population average. We define the

time-dependent and the long-term perturbation sensitivity as S(t) = 1 − |R(t)| (Fig. 4.5,
bottom panels) and S = S(tobs = 10 s) (Fig. 4.6), respectively. An observation of S(tobs) = 0
indicates that the effect of the small perturbation has vanished, i.e. that the network has
stable dynamics and is insensitive to the perturbation. An observation of S(tobs) = 1, in
contrast, corresponds to diverging spike patterns in response to the perturbation and thus
chaotic dynamics. In dynamical-systems theory and related applications, state differences

are typically expressed in terms of the Euclidean distance D =
√∑N

i=1 [xi(t)− x∗i (t)]
2. Here,

we employ the (normalized) correlation coefficient R instead to avoid (trivial) firing rate
dependencies. Note that D and R are redundant in the sense that both can be expressed in
terms of the moments ⟨xi(t)x∗i (t)⟩i,

〈
xi(t)

2
〉
i
,
〈
x∗i (t)

2
〉
i
, ⟨xi⟩i and ⟨x∗i ⟩i.

4.4.3 Linearized network dynamics and stability analysis

In the following, we describe the analytical approach to investigate the effect of synapse
loss and firing rate homeostasis on the network’s linear-stability characteristics. To this
end, we employ results obtained from the diffusion approximation of the leaky-integrate-
and-fire (LIF) neuron with exponential postsynaptic currents under the assumption that the
synaptic time constant τs is small compared to the membrane time constant τm, and that the
network activity is sufficiently asynchronous and irregular (mean-field theory; Fourcaud &
Brunel, 2002; Helias et al., 2013; Schuecker et al., 2015). All parameters that are not explicitly
mentioned here can be found in tab. 4.2.
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Stationary firing rates and fixed points For each parameter set (synaptic weight J , extent
of synapse loss, different types of firing rate homeostasis), we first identify the self-consistent
stationary states by solving

νE = G (µE(νE, νI), σE(νE, νI))

νI = G (µI(νE, νI), σI(νE, νI))
(4.4)

for the population averaged firing rates νE and νI of the excitatory and inhibitory subpopula-
tions. Here,

G(µ, σ) =

(
τref + τm

√
π

∫ yθ

yr

du f(u)

)−1

(4.5)

represents the stationary firing rate of the LIF neuron in response to a synaptic input current
with mean µ and variance σ2 in diffusion approximation, with f(u) = eu

2
[1 + erf(u)], yr =

(Vr − µ)/σ + q
2

√
τs/τm, yθ = (θ − µ)/σ + q

2

√
τs/τm and q =

√
2|ζ(1/2)| (with Riemann zeta

function ζ ; Fourcaud & Brunel, 2002; Helias et al., 2013; Schuecker et al., 2015). For stationary
firing rates νE and νI of the local presynaptic neurons, the mean and the variances of the total
synaptic input currents to excitatory and inhibitory neurons are given by

µE =
(
KEEĴEEνE +KEIĴEIνI +KXĴXνX

)
τm,

µI =
(
KIEĴIEνE +KIIĴIIνI +KXĴXνX

)
τm,

σ2
E =

(
KEEĴ

2
EEνE +KEIĴ

2
EIνI +KXĴ

2
XνX

)
τm,

σ2
I =

(
KIEĴ

2
IEνE +KIIĴ

2
IIνI +KXĴ

2
XνX

)
τm,

(4.6)

respectively. The coefficients Kpq (p, q ∈ {E, I}) denote the number of inputs (in-degree)
to neurons in population p from population q, Ĵpq = τsC

−1
m Îpq the corresponding rescaled

PSC amplitude, KX the number of external inputs for each neuron in the network, and νX
the firing rate of the Poissonian external sources. Note that in our network simulations,
each external source is connected to a randomly selected subset of Kout

X neurons. As a
result, the number KX of external inputs each neuron in the network receives is a binomially
distributed random number. For the analytical treatment, we neglect this variability and
replace KX by the average KX = pKout

X /N . Equations eq. 4.4 and eq. 4.6 are simultaneously
solved numerically using the optimize.root() function (method=’hybr’) of the scipy
package (http://www.scipy.org). To ensure that all solutions are found, the fixed-point
search is repeated for 30 pairs of initial rates randomly drawn from a uniform distribution
between 0 and 50 spikes/s. If multiple coexisting fixed points are found, the one with the
highest firing rates is chosen for the subsequent analysis.

Synapse loss and firing rate homeostasis In this work, Alzheimer’s disease is modeled by
removing a fraction of EE synapses, i.e. by reducing the in-degree KEE. The self-consistent
firing rates νE and νI after synapse removal are hence reduced (Fig. 4.8 D). In the presence
of unlimited firing rate homeostasis, we adjust the weight ĴEE (of the remaining synapses)
(Fig. 4.8 B) until the excitatory self-consistent firing rate νref

E of the intact reference network
(before synapse removal) is recovered (Fig. 4.8 E). To this end, we numerically find the roots

http://www.scipy.org
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of νE − νref
E by employing again scipy’s optimize.root() function. We repeat the root

finding for 30 initial weights randomly drawn from a uniform distribution between Ĵ ref
EE and

10Ĵ ref
EE , where Ĵ ref

EE denotes the original weight before synapse removal, and keep the solution
where |νE − νref

E | is minimal. For limited homeostasis, the new EE weight is chosen as the
minimum of the solution ĴEE and 1.2Ĵ ref

EE (Fig. 4.8 C,F).

Figure 4.8: Mean-field theory. Dependence of the synaptic weight ĴEE (A–C), the average firing rate νE
of the excitatory population (D–F), the effective weight wEE of EE connections (G–I), the ratio wEEσE/ĴEE
(J–L), and the spectral radius ρ (M–O) on the synaptic weight J and the degree of synapse loss in the
absence of homeostatic compensation (left column), as well as with unlimited (middle column) and limited
firing rate homeostasis (right column). Superimposed black curves in (M–O) mark instability lines ρ = 1.
Same parameters as in network simulations (see Sec. 4.5.1 and Sec. 4.5.2).
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Linearized network dynamics and effective connectivity As shown in (Tetzlaff et al., 2012;
Helias et al., 2013), networks of spiking neurons can be formally linearized about a stationary
state ν∗ = (ν∗1 , . . . , ν

∗
N ) (linear-response theory) and thereby be mapped to an N -dimensional

system

δνi(t) =
N∑
j=1

(hij ∗ δνj)(t) (i ∈ [1, N ]) (4.7)

of linear equations describing the dynamics of small firing rate fluctuations δνi(t) = νi(t)−ν∗i
around this stationary state. The stationary states are determined as the self-consistent
solutions of

ν∗ = ϕ(ν∗), (4.8)

where ϕ(νin) represents the activation function mapping the vector of stationary input rates
νin to the vector of output rates. The coupling kernel hij(t) represents the firing rate impulse
response, i.e. the modulation in the output rate νi(t) in response to a delta-shaped fluctuation
in the rate νj(t) of presynaptic neuron j. We refer to the area

wij =

∫ ∞

−∞
dt hij(t) (4.9)

under the coupling kernel as the effective connection weight. It measures the average number
of extra spikes emitted by target neuron i in response to a spike fired by the presynaptic
neuron j, in the context of the background activity determined by the stationary state ν∗.
Exploiting the fact that the integral of the impulse response of a linear(ized) system is identical
to the long-term limit of its step response, the effective weight

wij =
∂ϕi(ν)

∂νj

∣∣∣∣
ν∗

(4.10)

is given by the derivative of the activation function ϕi of neuron i with respect to the stationary
firing rate νj of neuron j, evaluated at the stationary state ν∗. With ϕi(ν) = G(µi(ν), σi(ν))

from eq. 4.5, µi(ν) =
(∑N

j=1 Ĵijνj +KXĴXνX

)
τm, and σ2

i (ν) =
(∑N

j=1 Ĵ
2
ijνj +KXĴ

2
XνX

)
τm,

we obtain

wij =
∂G

∂µi

∂µi

∂νj

∣∣∣∣
ν∗

+
∂G

∂σi

∂σi
∂νj

∣∣∣∣
ν∗

=
Ĵij
σ∗
i

√
π(τmν∗i )

2 (f(y∗θi)− f(y∗ri)) (4.11)

as the effective weight of the LIF neuron in the stationary self-consistent state given by ν∗

(Tetzlaff et al., 2012; Helias et al., 2013). Note that for the result on the right-hand side of
eq. 4.11, we account only for the derivative ∂G

∂µi
of G with respect to the mean input µi (DC

susceptibility), but neglect the contribution ∂G
∂σi

resulting from a modulation in the input
variance σ2

i . Removal of EE synapses and the resulting decrease in stationary firing rates
(Fig. 4.8 D) leads to a reduction in the effective weight wEE of EE connections (Fig. 4.8 G). In
the presence of (unlimited) firing rate homeostasis, upscaling of EE synapses (Fig. 4.8 B) and
the resulting preservation of firing rates (Fig. 4.8 E) results in an increase in wEE (Fig. 4.8 H).

Stability analysis For the LIF neuron with weak exponential synapses (Helias et al., 2013) as
well as for a variety of other neuron and synapse models (Nordlie et al., 2010; Heiberg et al.,
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2013, 2018), the effective coupling kernel hij(t) introduced in eq. 4.7 can be well approximated
by an exponential function hij(t) = wijτ

−1exp(−t/τ)Θ(t) with an effective time constant τ
and Heaviside function Θ(t). With this approximation, eq. 4.7 can be written in form of an
N -dimensional system of differential equations

τ
dδν

dt
= −δν +W δν(t). (4.12)

Here, W = {wij} denotes the N × N effective connectivity matrix and δν(t) =
(δν1(t), . . . , δνN (t)) the vector of firing rate fluctuations. The system eq. 4.12 has bounded
solutions only if the real parts of all Eigenvalues λk of the effective connectivity matrix W
are smaller than unity, i.e. if Re(λk) < 1 (∀k). If ρ = maxk (Re(λk)) > 1, the linearized system
is unstable and fluctuations diverge. In the original nonlinear LIF network, an unbounded
growth of fluctuations is prevented by the nonlinearities of the single-neuron dynamics. For
large random networks where the statistics of the coupling strengths does not depend on the
target nodes, the bulk of Eigenvalues {λk|k ∈ [1, N ]} of W is located in the complex plane
within a circle centered at the coordinate origin and a radius ρ which is determined by the
variances of the effective connectivity (Rajan & Abbott, 2006). A single outlier is given by
the Eigenvalue λk∗ associated with the Eigenvector uk∗ = (1, 1, . . . , 1, 1)T, which is given by
the mean effective weight. In inhibition dominated networks, the mean synaptic weight
and, hence, λk∗ are negative. The stability behaviour is therefore solely determined by the
spectral radius ρ. For a random network composed of NE excitatory (j ∈ E ; NE = |E|) and
NI inhibitory neurons (j ∈ I; NI = |I|) with homogeneous in-degrees Kpq (p, q ∈ {E, I}) and
weights

wij =



wEE ∀i ∈ E , j ∈ E , connection j → i exists with probability KEENE
NNE

wEI ∀i ∈ E , j ∈ I, connection j → i exists with probability KEINE
NNI

wIE ∀i ∈ I, j ∈ E , connection j → i exists with probability KIENI
NNE

wII ∀i ∈ I, j ∈ I, connection j → i exists with probability KIINI
NNI

0 ∀i, j, connection j → i does not exist

, (4.13)

the squared spectral radius is given by

ρ2 = NEvE +NIvI = N−1
(
KEENEw

2
EE +KIENIw

2
IE +KEINEw

2
EI +KIINIw

2
II
)
. (4.14)

Here, vE = w2
EEKEENE/(NNE) + w2

IEKIENI/(NNI) and vI = w2
EIKEINE/(NNI) +

w2
IIKIINI/(NNI) denote the variances of the effective connectivity wij across the ensemble

of target cells (i ∈ [1, N ]) for excitatory (j ∈ E) and inhibitory sources (j ∈ I), respectively.
Without homeostatic compensation, EE-synapse loss leads to a stabilization of the linearized
network dynamics, i.e. a decrease in ρ (Fig. 4.8 M). In the presence of unlimited firing rate
homeostasis, the spectral radius ρ is preserved (Fig. 4.8 N), even if a substantial fraction of EE
synapses is removed (Fig. 4.8 N). If the homeostatic resources are limited, ρ is maintained
until the upscaled synaptic weights reach their maximum value (Fig. 4.8 O).

Preservation of linear stability by firing rate homeostasis At first glance, it is unclear
why firing rate homeostasis preserves the linear stability characteristics as measured by
the spectral radius ρ. While the stationary firing rates ν∗i are, by definition, kept constant
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during synapse loss and homeostasis, the input statistics μ∗
i , σ∗

i (Fig. 4.10 D,E), y∗ri and y∗θi
(Fig. 4.9 A,B) as well as the effective weights wij (Fig. 4.8 K) are not. To shed light on the
mechanisms leading to the preservation of ρ, we first note that the factor

√
π(τmν∗i )

2 (f(y∗θi)− f(y∗ri)) =: η(ν
∗
i ) (4.15)

on the right-hand side of eq. 4.11 is in good approximation uniquely determined by the
stationary firing rate ν∗i (Fig. 4.8 J–L). This can be understood by noting that, according to
eq. 4.5, the firing rates are determined by

∫ y∗θi
y∗ri

dy f(y), and that f(y) = ey
2
[1 + erf(y)] can be

approximated by an exponential function f(y) ≈ AeBy for the range of arguments spanned
by y∗ri and y∗θi (Fig. 4.9). With this approximation,

∫ y∗θi
y∗ri

dy f(y) = B−1
[
f(y∗θi)− f(y∗ri)

]
. For

constant firing rate, f(y∗θi) − f(y∗ri) is therefore constant, too, and the effective weight is
essentially determined by the ratio Ĵij/σ

∗
i . With wpq = η(ν∗p)Ĵpq/σ∗

p (p, q ∈ {E, I}), eq. 4.14
reads

ρ2 = N−1

(
KEENE

Ĵ2
EE

σ∗2
E
η2(ν∗E) +KIENI

Ĵ2
IE

σ∗2
I
η2(ν∗I ) +KEINE

Ĵ2
EI

σ∗2
E
η2(ν∗E) +KIINI

Ĵ2
II

σ∗2
I
η2(ν∗I )

)

= N−1

(
η2(ν∗E)NE

KEEĴ
2
EE +KEIĴ

2
EI

σ∗2
E

+ η2(ν∗I )NI
KIEĴ

2
IE +KIIĴ

2
II

σ∗2
I

)
.

(4.16)
According to our network simulations as well as the mean-field theory described above,
stationary firing rates of the excitatory and inhibitory subpopulation are identical in the
presence of firing rate homeostasis, i.e. ν∗ := ν∗E = ν∗I . With Eq.4.6 and assuming that the
contribution KXĴ

2
XνX of the external drive to the total input variances σ∗2

E/I can be neglected
(which is the case for the range of parameters considered in this study), we find that the
spectral radius

ρ2 =
η2(ν∗)
ν∗τm

(4.17)

is in good approximation uniquely determined by the stationary firing rate ν∗ (Fig. 4.10
and Fig. 4.7B). A constant firing rate (as achieved by firing rate homeostasis) is therefore
accompanied by a constant spectral radius.

Figure 4.9: Approximation of f(y) = ey
2

[1 + erf(y)] by an exponential function. A,B) Dependence
of yrE (A) and yθE (B) on the synaptic reference weight J and the degree of synapse loss in the presence
of unlimited firing rate homeostasis (mean-field theory). C) Graph of f(y) = ey

2

[1 + erf(y)] (black) and
exponential function AeBX (gray; A = 0.4, B = 2.5) fitted to f(y) in interval y ∈ [0.5, 1.5]. Same
parameters as in network simulations (see Sec. 4.5.1 and Sec. 4.5.2).
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4.5 Supplementary Materials

4.5.1 Network model

Summary
Populations excitatory population E , inhibitory population I
Connectivity random convergent connections (fixed in-degrees)

Neuron model leaky integrate-and-fire (LIF)

Synapse model exponentially decaying postsynaptic currents, static synaptic weights, fixed
delays

Input Poissonian spike trains

Populations
Name Elements Size
E LIF NE = K/ϵ

I LIF NI = γNE = γK/ϵ

Connectivity
Source Target Pattern
E E random convergent, in-degree KEE, delay d, weight JEE

E I random convergent, in-degree KIE = K, delay d, weight JIE = J

I E random convergent, in-degree KEI = γK, delay d, weight JEI = −gJ

I I random convergent, in-degree KII = K, delay d, weight JII = −gJ

all all no self-connections (“autapses”), no multiple connections (“multapses”)

Neuron
Type leaky integrate-and-fire (LIF) model

Description dynamics of membrane potential Vi(t) (i ∈ {1, . . . , N})
•spike emission at tik if Vi

(
tik
)
≥ θ

•subthreshold dynamics: τmV̇i = −Vi +RmIi(t) ∀k, ∀t /∈
[
tik, t

i
k + τref

)
•reset and refractoriness: Vi(t) = Vr ∀k, ∀t ∈

(
tik, t

i
k + τref

]
initial membrane-potential distribution at t = 0: random uniform between
0 and θ

exact integration with continuous spike times in discrete-time simulation
(Rotter & Diesmann, 1999; Morrison et al., 2007; Hanuschkin et al., 2010)
temporal resolution ∆t
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Synapse
Type current based synapses with exponential post-synaptic currents (PSCs)

Description Ii(t) =
∑N

j=1 Îij(PSC ∗ sj)(t)

with PSC(t) = e−t/τsΘ(t) and Heaviside function Θ(t) =

{
1 t ⩾ 0

0 else

↷ post-synaptic potential PSPij(t) = Îij
Rmτs
τs − τm

(
e−t/τs − e−t/τm

)
Θ(t)

synaptic weight Jij = Îij
Rmτs
τs − τm

([
τm
τs

] −τm
τm−τs

−
[
τm
τs

] −τs
τm−τs

)
=

max
t

(PSPij(t))

Input
Type spike trains modeled as independent realizations of a Poisson point process

Description p independent Poisson spike trains of rate νX, each connected to Kout
X ran-

domly chosen (excitatory and inhibitory) network neurons

Realizations
Description repetition of network simulations for M random realizations of network con-

nectivity, initial conditions, and external inputs

Table 4.1: Description of the network model according to (Nordlie et al., 2009).

4.5.2 Lists of parameters

Connectivity
Name Value Description
K 100 excitatory in-degree (number of excitatory inputs)

of reference network

KEE 5, 10, 20, 30, . . . , 100 excitatory-excitatory in-degree

ϵ 0.1 network density

γ 1/4 relative size of inhibitory subpopulation

Neuron
Name Value Description
τm 20ms membrane time constant

τref 2ms absolute refractory period

Cm 250 pF membrane capacity

Vr 0.0mV reset potential

τs 2ms time constant of post-synaptic current

θ 15mV spike threshold
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Synapse

Name Value Description

J 0.05, 0.1, . . . , 4.95mV EPSP amplitude

g 6 relative IPSP amplitude

d 1ms spike transmission delay

Input

Name Value Description

νX 750 spikes/s rate of external Poisson inputs

JX 0.2mV PSP amplitude evoked by external inputs

p 5 number of input sources (spike trains)

Kout
X 300 number of neurons each input source is connected

to (out-degree)

Simulation

Name Value Description

T 0.4, 10 or 2000 s total simulation time

∆t 0.1ms time resolution

M 10 number of random network realizations per para-
meter configuration

Table 4.2: Network and simulation parameters

Spike-train statistics
Name Value Description
b 10ms binsize for evaluation of Fano factor

Perturbation sensitivity
Name Value Description
t∗ 400ms perturbation time

δt∗ 0.5ms perturbation magnitude (time shift of one input
spike)

tobs 10 s observation time

∆tf 1ms time resolution of low-pass filtered spiking activity

τf 20ms time constant of low-pass filter h(t)

Table 4.3: Parameters for evaluation of spike-train statistics and perturbation sensitivity
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4.5.3 Canceling of the synaptic-weight variance by the input variance

Figure 4.10: Canceling of the synaptic-weight variance by the input variance. Dependence of
KEEĴEE (A), KEEĴ

2
EE (B), KEEĴ

2
EE+KEIĴ

2
EI (C), input mean μE (D), input variance σ2

E (E), and the ratio
νEτm (KEEĴ

2
EE +KEIĴ

2
EI)/σ

∗2
E (F) on the synaptic reference weight J and the degree of synapse loss in the

presence of unlimited firing rate homeostasis (mean-field theory). Note that νEτm (KEEĴ
2
EE +KEIĴ

2
EI)/σ

∗2
E

(F) is very close to unity in all regions where νE > 0 (cf.Fig. 4.8 E). Hence, the ratio between the synaptic-
weight variance KEEĴ

2
EE +KEIĴ

2
EI and the synaptic-input variance σ∗2

E is uniquely determined by the firing
rate. Same parameters as in network simulations (see Sec. 4.5.1 and Sec. 4.5.2).

4.5.4 Unspecific synapse loss and homeostasis

In this section, we expand our analysis of the linearized network dynamics towards a network
in which all types of synapses (EE,EI,IE,II) are removed. Accordingly, the homeostatic
upscaling affects all types of synapses (EE,EI,IE,II) such that the target firing rate is reached
by applying the same factor c to all synaptic weights and the initial proportion of the different
synapse types is kept constant (c · JEE = c · JIE = c · J and c · JEI = c · JII = −cg · J with c ≥ 1).

We observe that synapse-unspecific network dilution leads to a drop in firing rate (Fig. 4.11
D), but this drop is not as pronounced as if only EE synapses are removed (Fig. 4.8 D). For
small and moderate degrees of synapse loss, the firing rate changes only little. Upscaling J
compensates for this and fully restores the firing rates (Fig. 4.11 E), even for high levels of
synapse loss. In the absence of homeostasis, synapse unspecific network dilution reduces the
spectral radius (Fig. 4.11 M), but this effect is weaker as if only EE synapses were removed
(Fig. 4.8 M). For small and moderate degrees of synapse loss, the spectral radius is hardly
affected. Upscaling J fully recovers the spectral radius in the stable regime (ρ < 1). Close
to the transition from stable to unstable (ρ = 1, black contour line), recovery of the spectral
radius is approximately achieved (Fig. 4.11 N).
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Figure 4.11: Mean-field theory applied to network with unspecific synapse loss and unspecific
synaptic upscaling. Dependence of the synaptic weight ĴEE (A–C), the average firing rate νE of the
excitatory population (D–F), the effective weight wEE of EE connections (G–I), the ratio wEEσE/ĴEE
(J–L), and the spectral radius ρ (M–O) on the synaptic weight J and the degree of synapse loss in the
absence of homeostatic compensation (left column), as well as with unlimited (middle column) and limited
firing rate homeostasis (right column). Superimposed black curves in (M–O) mark instability lines ρ = 1.
Same parameters as in network simulations (see Sec. 4.5.1 and Sec. 4.5.2).
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Chapter 5

Discussion

5.1 Summary of the results

As discussed in the introduction of this thesis, the interaction between rich homeostasis and
the pathology of a disease, may result in processes that mask the disease progression and can,
consequently, hamper its understanding and diagnosis. I have argued that the involvement
of the homeostatic system might also be an important reason for the limited understanding in
Alzheimer’s disease (AD). In the Chs.2-4, I exemplify how these problems can be tackled from
different perspectives and brain scales. In this section, I will summarize the main findings
of these chapters and explain how these can contribute to further our understanding of AD,
particularly with respect to homeostasis.

A primary problem associated with a rich disease compensation is the observation that
marginal distributions of single disease-associated variables often overlap significantly across
health conditions (see Sec.1.5). As a consequence, the analysis of the joint distribution of
multiple variables is a prerequisite for successful disease diagnosis and understanding. How
an approximation of such a joint distribution can be derived is explained in Ch.2. Here, I
present the entire pipeline of having a multidimensional data set, constructing and comparing
multidimensional statistical models, calculating the probability that a patient has a certain
health condition (even considering the combination with other diagnostic criteria) and,
ultimately how this approach can aid the decision making process to reach the best possible
treatment.

How the exact realization of all these steps look like, is demonstrated based on functional
connectivity derived from fMRI data (see Sec.1.4.1). In this chapter, as an exception, the data
is not taken from AD patients, but from individuals suffering from schizophrenia, which
have been proven to feature functionally disconnected brain areas and could thus provide
an important baseline to test the methods employed. The special feature of this chapter
is that the likelihoods (see Sec.2.1) are derived step-by-step from first principles through a
sequence of easily understandable assumptions of partial exchangeability, sufficient statistics
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and prior knowledge. This allows the analysis to be easily extendable to other types of data
in a straightforward manner.

Apart from disease diagnosis, the construction of multidimensional statistical models can
also help to improve disease understanding. For instance, the role of individual variables,
each adding a dimension to the model, can be investigated and scrutinized. If, for example,
the removal of such a variable (which reduces the dimensionality of the model), heavily
aggravates the separability of the considered health condition, this variable might be par-
ticularly affected by the disease, and may thus indicate some of its most critical features. In
addition, multidimensional statistical models might help to identify disease subtypes, which
may be characterized by regions in this multidimensional space in which the probability
of having a specific disease is high and the probability of being healthy is low. Different
subtypes would correspond to different regions that only marginally overlap.

After having established a framework for constructing and comparing different statistical
models in Ch.2, the resulting knowledge is subsequently applied in Ch.3. The goal of this
work has been to evaluate and compare potential frameworks that might be helpful for
AD diagnosis. To be more explicit, fMRI data of individuals corresponding to one of tree
health conditions AD, MCI or healthy controls (see Sec.1.1), are used to construct cortex–wide
connectivity graphs. In these brain graphs, nodes correspond to brain areas and edges
describe the functional connectivity between these areas. These graph construction steps
can be executed with different methods and parameter configurations. Such graphs are thus
constructed in different ways by systematically combining a range of different methods. After
graph construction, graph structures are characterized based on different properties, such as
shortest path, clustering coefficient etc. (see Sec.1.4.2). Thus, for each combination of graph
construction, I obtain a range of graph properties, which build the basis for further analysis.
I subsequently investigate which graph construction methods bring about graph properties
that are best suited for AD diagnosis. In addition, the informative value of significant
differences in graph properties across health conditions is studied.

The analysis of the particular data set investigated in Ch.3 suggests that graphs in which
nodes represent large brain areas and edges are described by either correlations or by mutual
information transfer yield best diagnostic power. Slight thresholding of the edge weights has
only minimal effects on diagnostic performance. Moreover, significant differences in graph
properties are not necessarily a good predictor for diagnostic capability.

Despite the evaluation of the different graph construction methods with respect to disease
diagnosis, a particular finding in this chapter is that significantly contradicting results of
graph properties across health conditions can be a consequence of different graph construction
techniques. Thus, depending on the definition of graph nodes and edges, different relation
among graph properties are found, e.g. shorter and larger average shortest paths for AD
patients. This observation provides a possible explanation for the observed divergences across
other studies, in which, for example, the characteristic graph length or clustering coefficient
have been reported to be significantly larger (Zhao et al., 2012), unchanged (Sanz-Arigita
et al., 2010; Supekar et al., 2008) or significantly smaller (Supekar et al., 2008; Sanz-Arigita
et al., 2010) in AD. In all these studies, different graph construction methods have been
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applied, but almost no validation on how the graph construction methods could influence
the results has taken place.

Consequently, biologically mechanistic interpretations can only be drawn if they include an
explanation about the influence of the particular graph construction method on the study
outcome. However, due to the emergent nature of the graph properties in graphs derived
from fMRI data, this is hardly possible and unless more insight in how for example the exact
brain clustering influences graph properties is achieved, such an interpretation should be
avoided.

In addition, the sensitivity of graph properties and their relations with the graph construction
methods raises doubts that a homeostatic regulation of whole brain functional network exists
at all. If it exists, how does the brain define its ‘regions’ and ‘functional connectivity’? Or is it
possible to have a global homeostatic regulation that does not require the parcellation of the
brain, such that the concept of brain graphs is not appropriate?

In Ch.4, the effects of AD and a specific type of homeostasis on computational characteristics
are investigated by means of simple, neuronal network models. AD has been incorporated by
deleting excitatory-excitatory synapses. This type of synapse loss reduces the network’s firing
rate. Referring to observations of homeostatic mechanisms in the human brain, remaining
excitatory-excitatory synapses are increased in order to retain the firing rate. With respect to
functional characteristics, this kind of AD realization is shown to increase the regularity and to
decrease the synchrony in population firing activity. These phenomena are accompanied by a
decreased sensitivity to perturbation (increased stability). All these dynamical characteristics
recover for a wide range of synapse loss, if homeostatic regulation is not limited. However,
if synapse loss is limited and the target firing rate cannot be achieved anymore, dynamical
characteristics resemble the characteristics of an AD network without homeostasis. These
observation are supported and elucidated by an analogous analytical model and hint towards
a successful compensation of AD pathology, if the damage is still small. Thus, if the brain’s
intrinsic homeostatic strategies are able to slow down AD pathology, finding ways to support
homeostasis can constitute an important strategy to slow disease progression and achieve a
successful AD treatment.

5.2 The reciprocal interactions of different brain scales in
Alzheimer’s disease

Research that focuses on finding useful therapeutic targets against AD mainly investigates
molecular interactions and focuses on finding an appropriate molecular substrate to which a
potential drug can bind to. However, only considering processes on very small scales might
be too one-sided, as I will demonstrate based on the two following examples.

The interaction of a potential drug with the molecular machinery is mainly investigated in
mouse models, which only partly account for the AD pathology observed in humans as AD
does not occur in most animal models naturally and has to be induced artificially (see Sec.1.1).
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In humans, it is not easy to directly infer the effect of a drug on molecular level. This is
because an investigation of molecular interactions with high temporal and spatial resolution
relies on methods that are either massively invasive or require the killing of the animal.

In humans, methods that measure diffuse molecular concentrations on a large spacial scale
are mainly lumbar puncture and positron-emission-tomography (PET). In addition laborious
post-mortem investigations are possible in order to infer local molecular concentrations at
the time the patient died. Lumbar puncture is used in order to measure the concentrations
of various molecules (e.g. Aβ, tau), which are altered in the cerebrospinal fluid (CSF) in
AD patients and which represent, to some extent, altered molecular concentrations in the
brain (Blennow & Hampel, 2003). However, some proteins involved in AD pathology cannot
be investigated via lumbar puncture. Possible reasons are that the concentrations of these
molecules in the CSF are unchanged, even if altered in the brain tissue or that the molecules
are not stable enough in order to extract them from the CSF (Trombetta et al., 2018). PET
imaging, on the other hand, enables the monitoring of glucose, Aβ and tau with rater low
spacial resolutions (Marcus et al., 2014). Additionally, it might be possible to extend the
repertoire to other molecules involved in AD pathology, provided adequate radioactive
markers can be introduced.

In addition to measuring molecular concentrations, researchers have the possibility to non-
invasively image structural alterations (e.g. structural MRI) and functional changes (e.g.
functional MRI, EEG, MEG) of the brain on various temporal and spacial resolutions. How-
ever, the relationship between small-scale, molecular alterations and their effects on large
scale structural and functional changes is still difficult to infer. As a consequence, it is difficult
to extrapolate the results obtained in pharmacological studies obtained from animal models
to human beings. Therefore, once a drug is applied to humans, its effects are primarily
evaluated with respect to a potential amelioration of the cognitive decline observed in AD
patient and eventually, with respect to brain imaging. If a cognitive improvement is observed
and brain images of the treated patient are very similar to the one of the healthy patient, it
is not farfetched to conclude that the drug has a positive influence in reversing the changes
caused by AD and brings the brain back to normal function. If cognition is ameliorated and
the corresponding images are dissimilar, it might also be that the drug causes the brain to
move to a state which is different from the healthy state but is still associated with cognitive
improvement. In order to close this gap in understanding, it is important to intensify research
that focuses on understanding the interaction between the different scales.

Another reason why the focus in AD medical research should be broadened towards bridging
different scales is provided by the observation that cognitive performance can be improved
in AD patients by means of physical activity and cognitive training (Chen et al., 2016;
Choi & Twamley, 2013; Venturelli et al., 2011). There is compelling evidence that physical
exercise improves cognitive fitness even more than the drugs that are so far available (Smith
et al., 2013). Physical activity has a positive influence on many aspects that have been
shown to be affected in AD: it reduces oxidative stress, boosts energy metabolism, increases
vascularization and fosters neurogenesis (Choi & Twamley, 2013). Cognitive training and
physical exercise entail a change in the activity of various brain areas, which goes hand-in-
hand with changes on the molecular levels (Smith et al., 2013; Cespón et al., 2018). Thus, to a
certain extent, AD pathology can be counteracted by a top-down treatment with relatively
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few side-effects and an improvement of whole-body fitness. Since changing the pattern of
(global) brain activity via cognitive and physical training improves cognitive performance,
knowledge about the molecular mechanisms involved can even inspire future drug discovery.

In this thesis, I found that alterations in the performance and the dynamics of a small network
due to EE-synapses loss (AD) can be compensated by firing rate homeostasis based on
increasing the strength of remaining EE-synapses. Can the fMRI scan of an AD brain, in
which homeostasis counteracts synapse loss, still look different from a healthy one? As
described in Sec.1.4.1, the BOLD signal changes with neuronal activity, which requires a lot of
energy. Most of the energy is required for synaptic transmission (for ion pumps), especially
of excitatory synapses (Harris et al., 2012). To my knowledge it is not known whether small
but many synapses (’healthy state’) have different energy requirements than few but large
synapses (’AD with homeostasis’). But if this is the case, I would expect that the fMRI signal
of the corresponding brain areas of the homeostatic brain is different from the healthy brain.
As a consequence, the fMRI image could be used to diagnose AD even in the preclinical
phase (assuming that homeostatic compensation successfully delays the onset of cognitive
impairment).

So far, I have only considered the damage of brain areas itself and its relation to functional
changes as those observed with fMR imaging. I have not discussed what happens if long
range connections (the connection between areas) are disrupted, which seems to occur
already in early disease stages (Shao et al., 2012). Most of the long range connections are
connections between excitatory Pyramidal neurons (McGuire et al., 1991). So, what happens
to the dynamics and functionality of such a large-scale network if these excitatory-excitatory
connections fade away. Some hints to that questions are provided in Ch.4. So far, I claimed
that the results in Ch.4 only account for meso-scale networks of hundreds up to thousands of
neurons. I show that the observation of the simulation of the spiking network qualitatively
matches the outcome of the theory, which describes the activity of single ’neurons’ as a
continuous signal. This continuous signal could also describe the activity of brain areas,
and the excitatory-excitatory synapses loss, the decay of long range connection observed.
The adequate compensation would be the increase of excitatory long range connections,
which has not been observed. In our observation the AD network becomes less sensitive to
perturbation. Transferred to the large-scale network, this means that small changes in the
input to an area do not result in a change of its dynamics. In addition, the perturbation does
not propagate to other brain areas. This holding on to a specific network dynamic might be
linked to the repetitive behavior (Cullen et al., 2005) observed in AD patients. Accordingly,
external influences that would normally stop the repetitive behavior, fade away and do not
propagate to the network.

5.3 Outlook

Throughout this thesis, I have investigated AD by means of the analysis of fMRI data and
through a neuronal network model. In both cases, I have encountered problems, which,
in my opinion, represent characteristic shortcomings in AD research. In this section, I will
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outline these problems and explain why they are so crucial and how they might be addressed
in future work.

With respect to the analysis of fMRI data, I have faced the problem of small data sets, both in
terms of numbers of patients (data points) and recording length. Additionally, these datasets
typically originate from only a single scanner, which may introduce confounding effects. The
problem of small data sets is very common and probably a major source for contradicting
research results. First solutions for this problem are provided by multi–site studies that take
their data from different imaging modalities available to all qualified researchers for free
(e.g. Alzheimer’s Disease Neuroimaging Initiative, ADNI 1). However, there are still too few
studies that volunteer to share their data, which slows down research and increases research
costs. The too short recording time of the fMRI scans occurs because an individual can spend
only a limited time in the fMRI scanner. The short scan period are mainly a problem because
the signal-to-noise ratio of the fMRI scan is low and at least 350 sample points have been
proposed to be minimal for a successful data analysis assuming a signal-to-noise ratio of
50 (Murphy et al., 2007). This would often require doubling the recording times that are
commonly employed. However, since the sampling rates of the scanner get faster, more
sampling points might be reached soon without prolonging recording times.

I have experienced another, more general drawback in the analysis of fMRI data - the lack of
standard protocols for fMRI data preprocessing. This mainly includes spacial and temporal
filtering, noise reduction and registration procedures. Although softwares such as FSL 2 or
SPM 3 provide nice graphical user interfaces, which facilitate data analysis, it is often not clear,
what kind of parameters (e.g. the standard deviation of a Gaussian filter) should be used for
what particular type of data. A general recommendation of how data should be preprocessed
would also simplify the comparison between different studies. Hence, applying standard
data preprocessing across different studies would rule out the possibility that different results
originate from different preprocessing procedures.

Apart from problems with the analysis of fMRI data, I also encountered shortcoming in AD
research, when I designed the numerical and analytical model of AD (Ch.4). Here, problems
mainly arose because only little is know about the exact process of synaptic decay in AD.
Thus, it is still under debate, which synapse type is affected in which brain area at which
time point in the course of the disease. This criticism can be extended towards other network
and neuron properties such as network firing rates, number of death neurons etc. In my
opinion, this gap in knowledge occurs because too many studies focus on animal models
of limited reliability and post-mortem brain investigations of human brains are sparse. As
a consequence, research results from animal models or cell cultures are often generalized
to humans, which might not be justified. A first step to tackle this problem would be a
systematic classification of the results with respect to the exact animal model, cell culture
conditions, post-mortem analysis etc. Afterwards, similarities and differences across the
different classes can be identified. This analysis would facilitate the understanding of which
results are rather model specific or which observations apply to all models in the same way.

1http://adni.loni.usc.edu/
2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
3https://www.fil.ion.ucl.ac.uk/spm/
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This understanding is an important requirement in order to estimate in how far results from
animal models and cell cultures can be transferred to humans.

So far, I have explained the problems in AD research that have been directly linked to the
studies of this thesis. At the end, I would like to raise a more general problem in AD research.
As already mentioned earlier, the disease incidence can be influenced by a range of lifestyle
factors, e.g. smoking, physical activity, leisure activity, education (for review see Mayeux
& Stern, 2012). But this knowledge is difficult to transfer to society (Pope et al., 2003). In
general, I have the impression that people are more interested in taking a drug, rather than
changing their lifestyle. Personally, I am in favor of projects that give elderly people more
responsibilities and challenges especially with respect to childcare. The reasons are the
following: it is argued that AD is the price humans pay for having a very long post-fertile life
span (Gunn-Moore et al., 2018). The purpose of this extended life is thought to take of the task
of childcare of grandchildren. Childcare usually implies body movement, cognitive training
and dealing with new challenges and social integration. All these factors have been identified
to be beneficial for AD treatment (Mayeux & Stern, 2012; Pope et al., 2003; Hsiao et al., 2018),
because they probably promote intrinsic compensation mechanisms (Arenaza-Urquijo et al.,
2015). In addition, a change in lifestyle may also be beneficial for other diseases and improves
life quality in general.
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