000865232 001__ 865232
000865232 005__ 20210130002951.0
000865232 037__ $$aFZJ-2019-04763
000865232 041__ $$aEnglish
000865232 1001_ $$0P:(DE-Juel1)129358$$aMatsubara, Shizue$$b0$$eCorresponding author$$ufzj
000865232 1112_ $$aInternational Conference on Carotenoid Research$$cLemesos$$d2019-11-25 - 2019-11-28$$wCyprus
000865232 245__ $$aToward understanding the regulation of carotenoid turnover in plants
000865232 260__ $$c2019
000865232 3367_ $$033$$2EndNote$$aConference Paper
000865232 3367_ $$2DataCite$$aOther
000865232 3367_ $$2BibTeX$$aINPROCEEDINGS
000865232 3367_ $$2DRIVER$$aconferenceObject
000865232 3367_ $$2ORCID$$aLECTURE_SPEECH
000865232 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1569388330_12885$$xOther
000865232 520__ $$aProgress in plant carotenoid research has brought the scientific community genetic and molecular tools to manipulate carotenoid composition and accumulation in model plants and crops. However, the outcome of such manipulation often remains unpredictable due to many “unknowns” in feedback regulation, protein modification and interaction, or compartmentalization. Unravelling the mechanisms that control flux, partitioning and sequestration in carotenoid biosynthesis and degradation pathways necessitates, among other things, turnover analysis of pathway intermediates and products. Isotopic labelling has been a powerful tool for investigation of metabolic pathways in cells and plants. Photosynthetic CO2 fixation enables convenient incorporation of carbon isotopes in various metabolites under various conditions. While incorporation can be observed within seconds to minutes in and around primary metabolism, it can take hours to days for specialized metabolism, including that of carotenoids and apocarotenoids in photosynthetic and non-photosynthetic organs. Despite high sensitivity of detection, radioactive 14C is difficult to quantify at the molecular level and experiments inevitably generate radioactive waste. Here, we present whole-plant 13CO2 labelling systems combined with LC-MS and FTICR-MS analysis to study carotenoid turnover. Two experiments were conducted to test the applicability of the method. In the first experiment, a walk-in climate chamber was used to obtain 13C-labelled peppermint plants. Subsequently, changes in carotenoid isotopologue composition were monitored in leaves of these plants in ambient air. In the second experiment, Arabidopsis plants grown in ambient air were transferred to a small 13CO2 labelling chamber to analyze 13C incorporation in leaf pigments for up to seven days. The mass spectra of carotenoids obtained from the two experiments showed similar patterns of isotopologue peaks, indicating that the method is compatible with pulse-chase labelling experiments in both directions (13CO2/12CO2 and 12CO2/13CO2). This approach opens up new possibilities to elucidate the regulation of carotenoid metabolism in plants.
000865232 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000865232 7001_ $$0P:(DE-Juel1)129410$$aThiele, Björn$$b1$$ufzj
000865232 7001_ $$0P:(DE-Juel1)168462$$aBanh, Anh$$b2$$ufzj
000865232 7001_ $$0P:(DE-HGF)0$$aChlubek$$b3
000865232 7001_ $$0P:(DE-Juel1)129332$$aHombach, Thomas$$b4$$ufzj
000865232 7001_ $$0P:(DE-Juel1)129376$$aNeuwohner, Andrea$$b5$$ufzj
000865232 7001_ $$0P:(DE-Juel1)129338$$aJanzik, Ingar$$b6$$ufzj
000865232 7001_ $$0P:(DE-Juel1)129336$$aJahnke, Siegfried$$b7$$ufzj
000865232 7001_ $$0P:(DE-Juel1)129345$$aKleist, Einhard$$b8$$ufzj
000865232 909CO $$ooai:juser.fz-juelich.de:865232$$pVDB
000865232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129358$$aForschungszentrum Jülich$$b0$$kFZJ
000865232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129410$$aForschungszentrum Jülich$$b1$$kFZJ
000865232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168462$$aForschungszentrum Jülich$$b2$$kFZJ
000865232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129332$$aForschungszentrum Jülich$$b4$$kFZJ
000865232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129376$$aForschungszentrum Jülich$$b5$$kFZJ
000865232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129338$$aForschungszentrum Jülich$$b6$$kFZJ
000865232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129336$$aForschungszentrum Jülich$$b7$$kFZJ
000865232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129345$$aForschungszentrum Jülich$$b8$$kFZJ
000865232 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000865232 9141_ $$y2019
000865232 920__ $$lyes
000865232 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000865232 980__ $$aconf
000865232 980__ $$aVDB
000865232 980__ $$aI:(DE-Juel1)IBG-2-20101118
000865232 980__ $$aUNRESTRICTED