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ABSTRACT
Large scale electronic structure calculations require modern high
performance computing (HPC) resources and, as important, mature
HPC applications that can make efficient use of those. Real-space
grid-based applications of Density Functional Theory (DFT) using
the Projector Augmented Wave method (PAW) can give the same
accuracy as DFT codes relying on a plane wave basis set but exhibit
an improved scalability on distributed memory machines. The pro-
jection operations of the PAW Hamiltonian are known to be the
performance critical part due to their limitation by the available
memory bandwidth. We investigate on the utility of a 3D factor-
izable basis of Hermite functions for the localized PAW projector
functions which allows to reduce the bandwidth requirements for
the grid representation of the projector functions in projection op-
erations. Additional on-the-fly sampling of the 1D basis functions
eliminates the memory transfer almost entirely. For an quantitative
assessment of the expected memory bandwidth savings we show
performance results of a first implementation on GPUs. Finally,
we suggest a PAW generation scheme adjusted to the analytically
given projector functions.
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1 INTRODUCTION
Uniform real-space grids have proven to be equivalent to plane
wave (PW) representations for electronic structure calculations in
the framework of Density Functional Theory (DFT) [8, 12]. The
singularity of the nuclear potential can be represented accurately
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on radial grids centered at the atomic site. Furthermore, rapid oscil-
lations of the quantum mechanical wave functions caused by the
deep attractive potential can be resolved. The information transfer
from 3D Cartesian grids to radial grids and back is a key ingredient
of electronic structure calculations. Besides other approaches, an
accurate treatment of the singularities of the electronic potential at
the positions of the nuclei is enabled by the Projector Augmented
Wave (PAW) method [2].

The real-space grid approach, pioneered by Briggs et al. [4], is
the preferred approach for large scale DFT problems on supercom-
puters as it leads to very sparse matrix representations of the Kohn-
Sham Hamiltonian and is free of global Fourier transforms. These
properties allow an improved scalability on parallel computers com-
pared to calculations involving a PW basis. Most implementations
of real-space DFT sample the projector functions on a real-space
grid and store these in memory, as implemented for frozen-core
PAW [17, 19] or using pseudopotentials [9, 16], a limit case of PAW.

Then, the calculation of inner products between localized pro-
jector functions and fully extended Kohn-Sham wave functions
requires projection operations which are typically bounded by the
memory bandwidth (BW) of the computing device. Comparing to
the peak achievable rates of floating-point operations, memory
BW has become a scarce resource on modern high-performance
computing systems.
In this work, we suggest analytical shapes for the PAW projectors
which can lower the memory BW requirements for projection and
expansion operations in implementations of the PAW and pseu-
dopotential methods.
In this paper we make the following contributions:

• We introduce the Spherical Harmonic Oscillator (SHO) as a
natural link between 3D Cartesian grids and radial grids.

• We assess the potential to accelerate electronic structure
calculations using SHO eigenstates.

• We analyse the quality of existing PAW projectors when
represented in a SHO basis.

• We suggest a new PAW generation method adjusted to the
analytical projector shapes.

The rest of this paper is structured as follows. In sec. 2 we introduce
general properties of the SHO basis and basics of DFT calculations.
In sec. 3 we outline the application of a SHO basis for PAW pro-
jector functions under aspects of high-performance computing. In
sec. 4 the quality of a SHO basis expansion for existing PAW data
sets is assessed. We suggest a modification to the PAW generation
scheme in sec. 5. In sec. 6 expectable performance improvements
on graphics processors (GPUs) are assessed. Finally, sections 7, 8
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Figure 1: The eigenstates of the 1D harmonic oscillator are
Hermite polynomials times a Gaussian, see eq. (3).

and 9 contain a discussion of this approach, related works and a
summary, respectively.
Throughout the paper we use atomic Rydberg units:me = 1/2, ℏ = 1
and e2 = 2, i.e. length is measured in Bohr (≡ .529Å) and the unit
of energy is Rydberg (≡ 13.6 eV).

2 THEORY
2.1 Spherical Harmonic Oscillator
The quantum-mechanical Spherical Harmonic Oscillator (SHO)

ĤSHO = −®∇2 + ®r2σ−4 (1)

is a well-understood problem, often referred to as three-dimensional
isotropic harmonic oscillator. Here, σ is a length scale parameter
in Bohr units which also defines the energy scale. The 3D partial
differential equation (PDE) can be solved using separation of vari-
ables, either in the set of Cartesian variables (x ,y, z) ≡ ®r or, due
to the spherical symmetry of the potential term, using spherical
coordinates r , ϑ and φ.

2.2 Cartesian Coordinates
For the Cartesian approach it is sufficient to find the solutions of
the 1D harmonic oscillator Hamiltonian

Ĥ1D = −
∂2

∂x2 + x
2σ−4 (2)

which leads to the eigenenergy E1D = (2n+1)σ−2 with the quantum
number n ∈ N0. The corresponding eigenstates |ψn⟩ are given by
Hermite polynomials times a Gaussian envelope function:

ψn (x) ∝ Hn

( x
σ

)
exp(−

x2

2σ 2 ) (3)

where Hn (x) are Hermite polynomials. Proper normalizing factors
are omitted here for simplicity. The lowest five normalized Hermite
functions are shown in fig. 1.
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Figure 2: Radial part of the lowest eigenstates of the spher-
ical harmonic oscillator up to νmax = 6 for ℓ ∈ [0, 3].

For the 3D problem, three independent quantumnumbers (nx ,ny ,nz )
∈ N3

0 and the eigenenergy

ESHO σ
2 = 2(nx + ny + nz ) + 3 B 2ν + 3 (4)

are found. The eigenstates factorize in the three spatial dimensions:

Ψnxnynz (x ,y, z) = ψnx (x)ψny (y)ψnz (z) (5)

= Hnx

( x
σ

)
Hny

(y
σ

)
Hnz

( z
σ

)
exp(−

®r2

2σ 2 ) (6)

2.3 Spherical Coordinates
The PDE in spherical coordinates (r ,ϑ ,φ) leads to the radial quan-
tum number nr ∈ N0, the angular momentum character ℓ ∈ N0
and the magnetic quantum numberm ∈ [−ℓ, ℓ] ∩ Z:

Ψnr ℓm (r ,ϑ ,φ) = Rnr ℓ

( r
σ

)
Yℓm (ϑ ,φ) (7)

Here, Yℓm denotes spherical harmonic functions. The eigenstates
of the differential equation for the radial coordinate r are

Rnr ℓ(r ) ∝ r ℓL
(ℓ+ 1

2 )
nr (r2) exp(−

1
2
r2) (8)

where L(α )n are associated Laguerre polynomials. See fig. 2 for the
set of normalized radial functions Rnr ℓ(r ). Due to the spherical
symmetry of ĤSHO the eigenenergy does not depend onm:

ESHO σ
2 = 2(ℓ + 2nr ) + 3 B 2ν + 3 (9)

An energy diagram for nr , ℓ and ν is shown in fig. 3.

2.4 Connection of Subspaces
In eq. (9) and eq. (4), the energy quantum number ν ∈ N0 was
introduced. As both approaches solve the same problem the 1

2 (ν +
2)(ν + 1) energy-degenerate solutions in each subspace indexed by
ν must span the same functions space. In fact, it is possible to find
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Figure 3: Energy levels of the spherical harmonic oscillator.
The dashed gray diagonals correspond to a constant number
of radial nodes, nr . The lowest diagonal (nr = 0) corresponds
to Gaussian type orbitals. The red dashed horizontal lines
indicate energy-degenerate subspaces indexed by ν .

a unitary transform Û such that

Ψnxnynz (x ,y, z) ≡
∑
nr ℓm

U nr ℓm
nxnynz Ψnr ℓm (r ,ϑ ,φ). (10)

Matrix elements ofU nr ℓm
nxnynz are only non-zero if

ℓ + 2nr = ν = nx + ny + nz . (11)

Furthermore, even within each ν-block many entries of Û vanish
due to other symmetries.

2.5 SHO Basis Set
The full set of SHO eigenstates forms a basis of smooth functions
defined on R3 7→ C. Therefore, for both representations, radial and
Cartesian, the completeness relations

1 =
∞∑

nr ℓm

|nr ℓm⟩ ⟨nr ℓm | and (12)

1 =
∞∑

nxnynz

��nxnynz 〉 〈nxnynz �� (13)

must hold. Later, we will exploit that

1 =
∞∑

nr ℓm

|nr ℓm⟩ ⟨nr ℓm |

∞∑
nxnynz

��nxnynz 〉 〈nxnynz �� (14)

=

∞∑
nr ℓm

|nr ℓm⟩

∞∑
nxnynz

〈
nr ℓm | nxnynz

〉 〈
nxnynz

�� (15)

=

∞∑
nr ℓm

∞∑
nxnynz

|nr ℓm⟩U nr ℓm
nxnynz

〈
nxnynz

�� B B̂∞. (16)

Truncating the series at a givenmaximal energyEmax = (2νmax+3)σ−2

will break the completeness relation, B̂νmax , 1. However, through

the energy cut-off criterion it is ensured that

2nr+ℓ≤νmax∑
nr ℓm

|nr ℓm⟩ ⟨nr ℓm | =

nx+ny+nz ≤νmax∑
nxnynz

��nxnynz 〉 〈nxnynz ��
(17)

are both projection operators describing the same subspace of func-
tions. The size of a finite SHO basis is

NSHO =
1
6
(νmax + 3)(νmax + 2)(νmax + 1). (18)

2.6 Electronic Structure Methods
In the effective potential landscape arising from DFT two major
regions can be identified: core and interstitial. Close to an atomic
core the attractive Coulomb potential dominates. Here, spherical
coordinates (r ,ϑ ,φ) are best to solve the Kohn-Sham equation. Ra-
dial grids densely sample the radial coordinate r , typically in a
logarithmic fashion. All angular dependencies are expanded in
spherical harmonics Yℓm (ϑ ,φ). In the interstitial region the poten-
tial is strongly determined by the geometry of neighboring atoms
and their ionic character. Here, we have to solve a 3D PDE in order
to find valence states that describe chemical bonding.
There is a large variety of DFT methods that differ either by the
basis set used for the 3D problem or by the way these basis functions
are connected to the radial grids of each atom.
DFT methods based on a 3D plane wave (PW) basis set can make
use of

exp(ı®k · ®r ) = 4π
∞∑
ℓ=0

ıℓ
ℓ∑

m=−ℓ

Y ∗
ℓm (®̂k)Yℓm (®̂r ) jℓ(|®k | · |®r |) (19)

which yields a natural transition from Cartesian space ®r ∈ R3 to
radial coordinates r = |®r | via spherical Bessel functions jℓ(x) and
spherical harmonics Yℓm (ϑ ,φ). Methods exploiting this equation
directly are referred to as Augmented Plane Wave (APW) meth-
ods and implementations of e.g. the (full-potential) linearized APW
methods are often considered the most accurate electronic structure
codes [14, 24]. However, a basis consisting of NPW plane waves
leads to a dense matrix representation of the Kohn-Sham Hamil-
tonian requiring O(N 2

PW) memory and O(N 3
PW) operations to di-

agonalize them. As this easily exceeds the system capacities of a
single compute node, in particular memory capacity, we have to
consider the efficiency of parallel eigensolvers for dense problems
which typically require intensive all-to-all communication.
A vast number of DFT calculations are performed on PW methods
using Blöchl’s PAW method [2], e.g. [6, 13, 27]. PW-PAW can also
make use of eq. (19) for the calculation of the overlap between the
PWs and PAW projector functions localized in real-space. As this
also leads to a large dense Hamiltonian matrix, the sparse repre-
sentation of the PAW Hamiltonian in real-space is preferred in the
limit of large problems.

Switching between a real-space grid and a PW representation of
the wave functions demands for the application of global 3D Fourier
Transforms (FFTs) which are strongly memory-bound operations
and limit the scalability on distributed memory machines.
Real-space grid DFT is, by construction, free of FFTs and can be
combined with the PAW method equally well. Therefore, it is the
approach most suited for supercomputing.
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3 SAVING BANDWIDTH
3.1 High-Performance Computing
The expected availability of Exascale supercomputers gives hope
for the feasibility of large-scale calculations for real materials using
DFT and related methods. However, conventional representations
and solver algorithms exhibit all-to-all communication patterns
which do not scale well on distributed memory architectures. Real-
space grid based representations have shown to scale efficiently
on large allocations of HPC machines. Using domain decomposi-
tion, mainly nearest-neighbor inter-process communication in a
periodic 3D topology is required. This allows to parallelize work
with large numbers of tasks efficiently. However, the evolution
of HPC compute nodes undergoes a strong change from scalar
CPUs towards many-core architectures featuring wide vector units.
In particular, modern GPUs offer very high floating-point opera-
tion performances compared to their power consumption and can,
therefore, be found in many of the worlds largest HPC machines1.
The increase of parallelism due to more cores, wider vectors, in-
creased instruction level parallelism and extended capabilities for
simultaneous multithreading lets the processing power in terms
of arithmetic operations grow faster over years than technology
permits for the memory BW. Despite the advent of new memory
technologies, BW has become one of the most costly resources for
many applications in the field of computational science that cannot
leverage usual cache optimizations. This leads to an urgent need
for new bandwidth-saving algorithms.

3.2 Hamiltonian Action
For the real-space grid-based PAW approach, the performance of
iterative eigensolver methods, like e.g. ChASE [28], relies on a com-
putationally efficient implementation of the action of the Hamil-
tonian operator onto wave functions. The PAW Hamiltonian takes
the form

ĤPAW = T̂ + Ṽeff +
∑
ai j

��p̃ai 〉Da
i j

〈
p̃aj

��� (20)

with the kinetic energy operator T̂ and a smooth local effective
potential Ṽeff (®r ). The largest fraction of compute time for the action
of ĤPAW onto (preliminary) eigenvectors goes to the sum over the
dyadic expressions

��p̃i ⟩⟨ p̃j �� for each atom a. When applying ĤPAW
to a given set of independent wave functions, |Ψk ⟩, the application
of the so-called non-local potential part is performed in three steps:

(1) Projection: cajk =
〈
p̃aj

���Ψk 〉
(2) Multiplication: daik =

∑
j D

a
i j c

a
jk

(3) Expansion: add
∑
ai d

a
ik

��p̃ai 〉 to (T̂ + Ṽeff ) |Ψk ⟩

In real-space PAW implementations, the projector functions need
to be represented on the real-space grid. Following the original
PAW scheme, these functions are given as

p̃ai (®r ) = Panℓ(|®ra |)Yℓm (®̂ra ) (21)

where ®ra = ®r − ®Ra for each atom a and the index i encodes
(n, ℓ,m). In contrast to the spherical harmonics Yℓm the radial
parts Panℓ(r ) are given numerically and usually depend only on
the atom species of a. In the spirit of linearized APW methods,
1top500.org

typical projector set sizes are limited to two projectors per ℓ for
s-, p-, and d-projectors [10]. Hence, a typical setup used for cal-
culations involving transition metal atoms comprises six different
radial functions Panℓ(r ) which translates to 18 projector functions
p̃ai (®r ) per atom. The latter number defines the index range for i and
j in eq. (20). Light elements typically feature less projectors. For
rare earth elements, adding f -projectors is mandatory.

3.3 Projector Filtering
Following the original PAW methodology [2], projector functions
are supposed to be strictly confined to the inside of a sphere of
radius Raug around the atomic position ®Ra . For clarity of the nota-
tion we suppress the atom index a in the rest of sec. 3. The atomic
spheres are constructed to be non-overlapping so that Raug is usu-
ally chosen as half the nearest-neighbor distance (touching spheres).
This hard localization constraint leads to an unphysical aliasing
effect (egg box effect). A spurious dependency of the classical DFT
observables (total energy and atomic forces) on the relative position
of an atom w.r.t. the positions of grid points can be measured. Re-
moving high frequency components from p̃i (®r )mitigates this effect
and various methods have been proposed to filter the projector
functions in reciprocal space. Soler and Anglada [1, 25] summarize
the problem of finding the best localization in both, real-space and
reciprocal space.

Many implementations of real-space grid-based DFTmake use of
the filtering recipe by Tafipolsky and Schmid [26] where a Gaussian-
shaped mask function restores the localization in real-space after
suppressing high frequency components in the Bessel-transformed
representation of the radial part of a projector function.

Only the double-grid technique by Ono et al. [20] applies a filter
to the product Pnℓ(|®r |)Yℓm (®̂r ) in 3D space which implies that also
high frequency components that stem from the spherical harmonics
Yℓm are successfully suppressed.

Nevertheless, one effect of filtering is an increased projection
radius, Rprj > Raug, around the atomic position where the repre-
sentation of the projector functions on the grid is non-zero. This
strongly adds to the cost of the Hamiltonian action proportional to
(Rprj/Raug)

3.
To summarize: for reasons of costs it is essential to preserve the
localization of PAW projector functions in real-space. For reasons
of accuracy also localization in reciprocal space is mandatory.

3.4 Data Compression
One goal is to make the Hamiltonian action perform as efficient as
possible on current HPC compute systems, i.e. vectorized many-
core architectures. The projection operation (1) and its counterpart,
the expansion (3), can be written as matrix-matrix multiplications.
Here, one operand is a sparse matrix since the projector functions
are non-zero only close to the atom. The sparsity leads to a strong
limitation of the performance by the memory BW.

A major strategy for the reduction of BW requirements is to
decrease the communication volume, i.e. by data compression. A
projector functions represented on a uniform Cartesian real-space
grid with grid points at ®ȷ ∈ N3 can be viewed as rank-3 tensor
Pjx jy jz . Here, tensor compression methods as studied intensively
by Khoromskaia and Khoromskij [11] try to approximate high-rank
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tensors by sums of dyadic products. In this particular case we seek
a representation

Pjx jy jz ≈
∑

nxnynz

P̄nxnynz v
[x ]
nx jx

v
[y]
ny jy

v
[z]
nz jz

(22)

as depicted in fig. 4. If it is possible to find such an approximation
with reduced ranges of the indices (nx ,ny ,nz ) compared to the
ranges of (jx , jy , jz ) then P̄ is a rank-3 tensor of much lower volume.
Furthermore, the total amount of memory needed for loading the
rectangular matrices v[x |y |z] in addition to loading P̄ can be lower
than the total volume of P , depending on the original ranges and
its compressibility. In particular if we consider a set of projectors,
as usual in PAW, that can make shared use of the same 1D function
sets v[x |y |z], we expect an overall good compression ratio.

Transferring this scheme to the factorizable SHO basis, eq. (5),
we are seeking an approximation of the projector set p̃i (®r ) of each
atom as

p̃i (x ,y, z) ≈
∑

nxnynz

p̄i nxnynz ψnx (x)ψny (y)ψnz (z) (23)

with small ranges for (nx ,ny ,nz ).
Dealing with compressed representations, an additional decom-

pression operation is necessary. However, executing a task that is
limited by the memory BW usually implies idle arithmetic units in
the processor, so that the decompression phase is expected not add
to the total execution time.

3.5 SHO Basis
Consider injecting the SHO basis projector B̂νmax as defined in
eq. (17), but for a finite νmax and given σ , into the projection oper-
ation:

〈
p̃j

���B̂νmax

���Ψk 〉. For simplicity of the notation we suppress
the atom index a here. Then, we can evaluate the inner products〈

p̃j
��nr ℓm〉

B Fjnr ℓm (24)

on radial grids during the initialization phase of the DFT calculation.
The operation left to be performed every time is a projection onto
the Cartesian factorizable SHO basis introduced in sec. 2.1:

Cnxnynzk =
〈
nxnynz

��Ψk 〉 (25)

=

∭
R3

d3 ®r ψnx (x)ψny (y)ψnz (z)Ψk (x ,y, z) (26)

In order to retrieve the original projection coefficients c jk we can
transform the new coefficients Cnxnynzk with

〈
p̃j
��nr ℓm〉

≡ F̂ and〈
nr ℓm

��nxnynz 〉 ≡ Û . However, there is no need to retrieve these
coefficients as these are temporary quantities existing only for the
duration of projection and expansion operations. In fact, we can
inject B̂†

νmax also into the expansion operation. Then, we collect all
terms such that the original dyadic operator is fully transformed:

|p̃i ⟩Di j
〈
p̃j
�� SHO
−→ B̂

†
νmax |p̃i ⟩ Di j

〈
p̃j
�� B̂νmax (27)

=
��nxnynz 〉 U

nxnynz
nr ℓm

Finr ℓm Di j Fjn′
r ℓ

′m′ U
n′
r ℓ

′m′

n′
xn′

yn′
z

〈
n′xn

′
yn

′
z

���
B

��nxnynz 〉 D
nxnynz
n′
xn′

yn′
z

〈
n′xn

′
yn

′
z

��� (28)

with contraction over adjacent indices (Einstein notation).
The atomic Hamiltonian term D̂ is now replaced by D̂ which can
be computed as Û †F̂†D̂F̂Û at initialization of each SCF cycle. D̂
represents a real-valued matrix of dimension NSHO. See eq. (18) for
the definition of NSHO.

3.6 Smoothness
Another advantage of the SHO basis for projectors is that it does not
require any filtering in reciprocal space before it can be represented
on a uniform Cartesian grid, c.f. sec. 3.3.
In fact, the highest kinetic energy in a 1D Hermite function is given
by its eigenenergy E1D = (2n+1)σ−2. According to the sampling
theorem, kmax · hmax = π , it is possible to sample the 1D Hermite
functions on a uniform real-space grid with maximum grid spacing

hmax =
π σ

√
2νmax + 1

. (29)

Since Hermite functions are eigenfunctions of the Fourier transform
their representation in reciprocal space reads

F

{
Hn (x) exp(−

x2

2
)

}
(k) ∝ (−1)n Hn (k) exp(−

k2

2
). (30)

The Gaussian suppresses high Fourier components in reciprocal
space and, thus, controls the smoothness of the function set. We
show in the appendix sec. B that the radial SHO eigenstates Rnr ℓ(r )
are eigenfunctions of the Fourier-Bessel transform. Hence, the radial
SHO eigenstates also feature a Gaussian decay in Fourier space.
This shows that SHO states are the simultaneously best localized
functions in both spaces.

3.7 On-the-fly Basis
Using the recursion relation for Hermite polynomials

H0(x) = 1, H1(x) = x , Hn+1(x) = x Hn (x) −
n

2
Hn−1(x) (31)

it is even possible to cheaply evaluate the grid-sampled 1D Hermite
functions during the decompression phase. This reduces the total
transferred memory volume to a few Bytes. Hence, it effectively
eliminates the memory BW requirement for the data list of the
sparse matrix that results from the projector functions. The missing
factors ensuring normalization of the Hermite functions can be
absorbed into the transformed atomic matrices D̂.

We might experience that in some situations the SHO basis
needs to be considerably larger than the original set of numerically
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given projectors which increases the BW requirements for the
intermediate coefficients Cnxnynzk for each atom that have to be
stored after projection and loaded before expansion. Therefore, we
investigate on the necessary minimum size of a SHO basis that still
yields an acceptable representation quality of the PAW projector
functions.

4 QUALITY OF REPRESENTATION
We investigate how well commonly used projector functions Pnℓ(r )
can be represented in the radial SHO basis Rnr ℓ(r/σ ) as a function
of the spread σ . We define the representation quality Q as

Qν (σ ) =

⌊ 1
2 (ν−ℓ)⌋∑
nr=0

��〈Pnℓ(r )| Rnr ℓ(r/σ )〉��2 . (32)

Applying this metric to all PAW data sets (*.PBE) publicly available
in the package gpaw-setups-0.9.9672 from GPAW [7] shows that
we can represent most unfiltered projector functions with at least
90 % quality. Even higher values are seen if the projector functions
are mask-filtered [26] before.

A typical convergence of Q w.r.t. νmax can be observed at the
example of the platinum (Pt) d-projector, see fig. 5. For νmax = 2,
the radial SHO basis in the d-channel consists of a single function
that features no radial nodes. The Pt-d-projector function from the
GPAW data base can only be represented up to Q = 77 % at σ =
0.84 Bohr (solid black line). Already for two basis function (νmax =
4), we can reach up to Q = 99.4 % at σ = 0.59 Bohr (solid green
line). Adding more basis functions does not increase Q much but
makes the maxima wider, i.e. a larger basis is capable of accurately
representing the numerically given projectors with some flexibility
on σ . We can see that the best increase in quality is reached with
νmax = 4. For higher νmax, the gain in Q is small compared to the
increase in costs since the SHO basis size grows ∝ ν3

max, c.f. eq. (18).
The simplicity of the SHO basis is an advantage and a drawback

at the same time. Only a single σ can be selected for all projector
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Figure 6: Best representation quality as a function of σ for
all projectors of platinum with νmax = 4. Colors are cho-
sen according to ℓ-character, solid and dashed lines show
the first and second (*) projector, respectively. We select
σ = 0.59 Bohr (green dot). The solid green line again shows
the quality of the Pt-d-projector as above.

functions of one atom. As visible in fig. 6 the quality functions for
the s , s∗, p, p∗, d and d∗-projectors have their maxima at slightly
different values of σ . Therefore, we selected the peak of the sharpest
curve which for the case of platinum is thed-projector. As discussed
above, the best quality for νmax = 4 is found at σ = 0.59 Bohr which
is marked with a dot in fig. 6.

With respect to costs, we would like to keep the SHO basis as
small as possible. The minimal number of radial basis functions can
be derived from the number of projectors in each ℓ-channel. The
minimal νmax for all PAW data sets analysed can be found in the
appendix sec. A. This is, as a rule of thumb, νmax = 4 for transition
metals, νmax = 3 for non-metals and νmax = 2 for light elements,
Z < 5. Further, we suggest νmax = 5 for the treatment of rare
earth elements in order to host two projectors in the f -channel.
For some elements with the minimal νmax it is, however, difficult
to find a single value σ that produces good representation qualities
for all projectors. As it would be desirable in terms of costs to be
able to use the minimal νmax we suggest a modified PAW dataset
generation procedure described in the following section.

5 MODIFIED PAW DATA GENERATION
For the generation of PAW data sets several different recipes can be
found in the literature, see e.g. [10] or [13] and references therein.
This starts at the pseudization of the true local potential Veff (r ) →
Ṽeff (r ) i.e. there are different shapes for a smooth continuation of
the potential inside the augmentation sphere. For the generation of
true partial waves ϕnℓ(r ), a set of energy parameters εnℓ needs to
be chosen. Assuming a spherically symmetric true potentialVeff (r ),
a true partial wave ϕnℓ(r ) is found by outwards integration of the
radial ordinary differential equation (ODE) for a given energy εnℓ .
This can be either the scalar relativistic equation or the Schrödinger
equation. Furthermore, the generation of smooth partial waves
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ϕ̃nℓ(r ) and projector functions p̃nℓ(r ) depends on the recipe one
follows. The simplest prescription is to use r ℓ times a low-order
polynomial in r2 for the construction of the smooth partial waves,
ϕ̃nℓ(r ). This is matched with value and derivative to the true partial
wave ϕnℓ(r ) at r=Raug [21]. Once obtained ϕ̃nℓ(r ), a first guess for
the shape of the radial part of the projector function comes from

|p̃nℓ⟩ =
(
T̂ + Ṽeff − εnℓ

) ���ϕ̃nℓ〉 (33)

as suggested by Blöchl in his original work on PAW [2]. In order to
keep the SHO basis small (minimum νmax, if possible) we suggest
to invert this scheme. We regard eq. (33) as inhomogeneous ODE
and solve it for ϕ̃nℓ(r ) using the radial SHO eigenstates Rnr ℓ(r/σ )
with nr =n as projector functions:���ϕ̃nℓ〉 = (

T̂ + Ṽeff − εnℓ

)−1
|Rnℓ⟩ (34)

This removes a lot of free parameters from the PAW generation
scheme as we are only left with νmax and σ . The cut-off radius Raug
is only required for the construction of Ṽeff (r ). We can even try to
eliminate this dependency: GPAW constructs Ṽeff (r ) as parabola
for r < Raug which matches the true potential at Raug in value and
first derivative. If we constrain the curvature of this parabola to a
fixed function of σ , e.g. (2σ )−4, the parabola and the true potential
touch at a radius Rlid which comes out of the procedure instead
of being an input. We call this the potential lid technique since the
parabola’s offset is lowered until it touches the true potential, much
like a lid that closes a pot. See fig. 7 for a schematic picture. The
factor of two rescaling σ has been chosen to produce good results
for iron. However, we suspect it to work well for a wider range of
elements which would allow to eliminate it from the list of tunable
parameters.

As we want the pseudo Hamiltonian to produce the same energy
ordering in the valence range as the true Hamiltonian, we demand
that that ε0ℓ < ε1ℓ < · · · < εnmax, ℓℓ where nmax, ℓ =

⌊ 1
2 (νmax − ℓ)

⌋
.
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5.1 Results
As an example, we will discuss the results obtained for iron (Z = 26).
Here, we find a lid radius Rlid of 2.08 Bohr which is very close to
the radius used in the GPAW data set. A spread parameter of σ =
0.65 Bohr for the analytical SHO projectors was selected to yield
the simultaneously best representation quality of all projectors with
νmax = 4. The selected reference energies are −0.4 (Fe-4s), −0.11
(Fe-4p) and -0.57 Rydberg (Fe-3d). The latter is also used for ℓ > 2.
Additional true partial waves are generated at n

ℓ+1 Rydberg above
their reference energies. The resulting true and smooth partial
waves are shown in fig. 8.

We verify the scattering properties of the new PAW dataset for
iron generated according to eq. (34) by comparing its logarithmic
derivative Lℓ(E) to that of the true potential, see fig. 9. Except for
a 4mRydberg shift in the position of the s-resonance, the (solid)
lines of the true Lℓ(E) lie on top of the pseudo Lℓ(E) (dashed lines)
which is a reasonably good agreement. The Fe-3d-states are strongly
localized which makes them appear as a narrow resonance at -
0.57 Rydberg, see inset in fig. 9. Since the spread σ and the cutoff
νmax are tunable input parameters to the generation procedure we
have sufficient freedom to produce a transferable PAW dataset.

5.2 Rescaling of partial waves
Blöchl’s PAW generation scheme [2] allows to rescale partial waves
and projectors according to(

ϕnℓ , ϕ̃nℓ , p̃nℓ

)
→

(
s ϕnℓ , s ϕ̃nℓ , s

−1p̃nℓ
)
, s ∈ R \ {0} (35)

independently for each n and ℓ. This is because after a successful
PAW generation procedure, the dual orthogonality〈

p̃nℓ | ϕ̃n′ℓ

〉
= δnn′ (36)
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must hold. Typically, this orthogonality is established by rescaling
the lowest projector and the lowest partial waves and orthogonal-
izing the higher ones to the lowest. This procedure is equivalent to
an LU -decomposition.

With the SHO projectors, rescaling is not allowed if we aim to
exploit the 3D factorization, c.f. eq. (10). It is rather important that
the Rnℓ(r/σ ) enter eq. (34) with proper normalization. Therefore,
eq. (36) is enforced by applying the inverse of

〈
p̃nℓ | ϕ̃n′ℓ

〉
only to

the preliminary pairs of true and smooth partial waves.

6 PERFORMANCE MEASUREMENTS
For an impression of the expectable savings we assess the perfor-
mance of projection (prj) and expansion (add) operations as defined
in sec. 3.2 by (1) and (3), respectively, for a first implementation
on NVIDIA GPUs. In order to provide a meaningful comparison
between the runtime of SHO projectors which are generated on-the-
fly and the reference (USU) using precomputed projector values, we
work in the same framework and exchange only the kernel. The test
system is a cubic domain of edge length 16Å with a grid spacing
of 0.25Å, i.e. 64 × 64 × 64 grid points. Assuming a face-centered
cubic crystal of atoms with a lattice constant of 4.08Å (e.g. silver
or gold) lets us find 241 atom positions inside the domain. With
a projection radius of 3.55Å exactly 665 atoms contribute with a
non-zero overlap of their projection sphere and the cubic domain,
see fig. 10. Mind that there is also a non-zero overlap between
projection spheres of neighboring atoms. Unlike the augmentation
spheres, the projection spheres may overlap.

The Hamiltonian is applied to 1024 wave functions at a time.
This index is used for vectorization over warps of 32 GPU-threads.
The performance results are converged w.r.t. this number.

Figure 10: 2D sketch of the overlapping projection spheres
inside a cubic domain of edge length 16Å. This setup is used
for the GPU performance benchmarks in double precision.
In average, the wave function values of each grid point are
involved into eleven projection operations. The radius of
each projection sphere is 3.55Å while the nearest neighbor
distance of atomic nuclei is 2.9Å.

For stable performance results the kernel execution is repeated
10 times. After a warm-up run which is not considered, the median
of 15 runs is reported in tab. 1.

The memory consumption for the precomputed projectors is
76MByte per projection coefficient. This results in an additional
GPU memory request of up to 4.2 GByte.

We executed on an IBM PowerNV 8335-GTB with NVIDIA Tesla
P100-SXM2 (Pascal) GPUs connected by NVlink. Runtime and com-
pilers are CUDA 9.2.148, GCC 7.2.0. Furthermore, we bench-
marked the latest NVIDIA Tesla V100 (Volta) GPUs mounted on
an Intel system (Xeon Gold 6148) connected via PCIe. Here, CUDA
9.2.148 and GCC 7.3.0 toolchains were used.

Estimating the upper limit of floating point operations executed
we can verify that all kernels are performance-limited by the device
memory BW. Hence, an improvement in the timings directly relates
to savings in the BW.

From tab. 1 we can see an up to 6.6 times faster execution depend-
ing on the kernel, the basis size and the device used. The speedup
S compares the timings of the USUal projection operations using
precomputed projector functions to timings of the SHO projection
operations. While USU kernels can take any number of projectors
a SHO basis of size 18 cannot be constructed, therefore, the cor-
responding entries for SHO are empty. However, we included the
timing result for USU18 as it allows to consider a typical calcula-
tion setup for transition metal elements. In order to cover s , s∗, p,
p∗, d and d∗ projectors, the SHO basis must be constructed with
νmax = 4, i.e. 35 projection coefficients. Hence, a fair comparison of
the two methods is to take USU18 vs. SHO35 which translates into
an algorithmic speedup given in tab. 2. Executing both kernels after
each other, prj+add, in double precision results in an algorithmic
speedup of 2.6 on P100 GPUs and 2.0 on the more recent Volta
architecture, V100.

7 DISCUSSION
The suggested application of a SHO basis for projection operations
or, even going further, analytical SHO projector functions brings
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Table 1: Performance improvement on NVIDIA GPUs. All
times are reported in seconds. The speedup S is the unitless
ratio of timings USU/SHO for the same # of projectors.

NVIDIA P100 Pascal
# USUprj SHOprj S USUadd SHOadd S

1 0.480 0.453 1.1 0.274 0.187 1.5
4 0.834 0.471 1.8 0.803 0.363 2.2
10 1.259 0.430 2.9 1.820 0.520 3.5
18 2.080 3.173
20 2.366 0.482 4.9 3.511 0.733 4.8
35 3.904 0.967 4.0 6.052 1.027 5.9
56 6.058 1.214 5.0 9.625 1.455 6.6

NVIDIA V100 Volta
# USUprj SHOprj S USUadd SHOadd S

1 0.291 0.271 1.1 0.140 0.118 1.2
4 0.354 0.310 1.1 0.378 0.189 2.0
10 0.555 0.284 2.0 0.823 0.277 3.0
18 0.830 1.411
20 1.013 0.300 3.4 1.557 0.398 3.9
35 2.087 0.575 3.6 2.660 0.564 4.7
56 1.806 0.793 2.3 4.208 0.792 5.3

Table 2: Algorithmic speedup comparing USU18 vs. SHO35.

float double
GPU prj add both prj add both

P100 2.3 2.9 2.7 2.2 3.1 2.6
V100 1.4 1.7 1.6 1.4 2.5 2.0

many advantages but also comes with some drawbacks. In this
section, we discuss pro and contra.

7.1 Advantages
The SHO basis

• factorizes in the Cartesian coordinates (x ,y, z).
• can be sampled on uniform grids without filtering.
• has only two parameters, σ and νmax.
• is given analytically.

In particular the last point, the analytical shapes, allows to save
memory bandwidth and memory capacity for implementations of
grid-based projection operations, as shown in sec. 6.

7.2 Drawbacks
The SHO basis does not offer the flexibility to represent any projec-
tor function with good quality. However, we have shown that the
PAW generation scheme can be adjusted to using radial SHO basis
as projectors.

The SHO basis leads to more projection coefficients than usual
PAW. For example, two projectors for the s , p and d-channel makes
18 coefficients. In order to fit a d∗-projector into a SHO basis, we
need a minimum νmax of 4, i.e. 35 coefficients. However, we have
to take it as an upside. With νmax = 4 the SHO basis contains

an additional s∗∗, seven f and nine д-projectors. Adding projec-
tors and partial waves of higher ℓ may potentially improve the
transferability of the PAW data sets for chemical environments
with low symmetry since gradients in the potential scatter into
the next higher ℓ-channel. Compared to commonly used projector
sets, SHO projectors treat also higher ℓ-channels in full-potential
accuracy. However, the true transferability remains to be shown in
3D calculations.

8 RELATEDWORK
Already 1986, Obara and Saika presented the ansatz of 3D prod-
ucts of primitive Cartesian Gaussian (pCG) functions xν exp(− 1

2x
2)

in order to evaluate two- and three-center integrals [18]. In fact,
there is a strong relation between pCGs and the 1D harmonic
oscillator states. The pCG functions form a non-orthogonal ba-
sis set. Applying Gram-Schmidt orthogonalization to pCGs leads
to 1D Hermite functions. Many works in quantum chemistry, as
e.g. Schlegel and Frisch [23], have mentioned the increased basis
size 1

2 (ℓmax + 2)(ℓmax + 1) of the pCGs compared to (2ℓmax + 1) but
this has usually been taken as a weakness rather than a strength.

The idea of using the SHO basis has probably not received atten-
tion as the related basis set

χnr ℓm (®r ) = r ℓ+2nr exp(−
r2

2σ 2 ) Yℓm (r̂ ) (37)

has been found not to converge as rapidly as a set of only Gaussian-
type orbitals (GTOs) contracted over a set of different spread pa-
rameters σ [5] when used as a basis set for quantum chemistry
calculations [22].
Note that the subset of radial SHO states with nr = 0 are GTOs.

9 CONCLUSIONS
The eigenstates of the Spherical Harmonic Oscillator (SHO) form a
natural link between 3D Cartesian grids and radial representations
with sharp quantum numbers for the angular momentum, (ℓ,m),
without the use of global Fourier transforms. Projection and expan-
sion operations are the heart of the Projector Augmented Wave
(PAW) method [2] for electronic structure calculations. Using the
SHO basis for these operations allows to exploit its special prop-
erties. Similar to compressed tensor representations, the 3D SHO
states can be factorized into eigenstates of the 1D harmonic oscilla-
tor for each of the three Cartesian coordinates (x ,y, z). This offer
a great potential for reducing memory bandwidth requirements
and memory capacity constraints. In particular since it is cheap to
recompute the analytically given 1D basis functions compared to
loading them frommemory. A first implementation on GPUs shows
that we can expect an at least two times faster application of the
non-local parts of the PAWHamiltonian for transition metals. Com-
monly used PAW projector functions can be represented in a SHO
basis, however, the cost-saving minimal basis size is not suitable for
representing arbitrary functions. Therefore, we suggest a modified
PAW generation scheme in which the projector functions are fixed
to the analytically given radial SHO basis functions eliminating
the freedom of choosing the shape and scale of the smooth partial
waves.
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A MINIMUM νmax FOR ALL ELEMENTS
We suggest the minimal νmax for the GPAW setups in the structure
of a periodic table of elements from 1H to 86Rn:

2 2
2 2 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3
3 3 4 4 4 4 - 4 4 4 4 4 4 4 4 3 3 3
3 4 4 5 ... 5 4 4 4 4 4 4 4 4 4 4 4 4 - - 3

Rare earth elements (RE) are not included in the publicly available
collection gpaw-setups-0.9.9672 [7]. We suggest νmax = 5 for
REs in order to have two projectors in the f -channel. For νmax = 2,
3, 4 or 5 the size of a 3D SHO basis is 10, 20, 35 or 56, respectively.

B EIGENFUNCTIONS OF THE
FOURIER-BESSEL TRANSFORM

The radial SHO eigenfunctions shown in fig. 2 are eigenfunctions
of the Fourier-Bessel transform (FB) which reads

FB{Rnℓ(r )}(q) =

√
2
π

∫ ∞

0
r2dr jℓ(qr ) Rnℓ(r ) (38)

where jℓ(x) are the spherical Bessel functions of the first kind
featuring a regular xℓ behaviour at the origin. The proof is given
by Brackx et al. [3] (dimensionm = 3, degree k = 0) exploiting the
identity given by Magnus et al. [15], page 244:∫ ∞

0
dr exp(−

r2

2
)rα+1L(α )n (r2)Jα (r

√
x) = (−1)nxα/2 exp(−

x

2
)L

(α )
n (x).

Replacing α = ℓ + 1
2 and x = q2 this becomes∫ ∞

0
dr Jℓ+ 1

2
(qr ) r ℓ+

3
2 exp(−

r2

2
)L

(ℓ+ 1
2 )

n (r2)

= (−1)n qℓ+
1
2 exp(−

q2

2
)L

(ℓ+ 1
2 )

n (q2).
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With the common definition of spherical Bessel functions

jℓ(z) =

√
π

2z
Jℓ+ 1

2
(z) we arrive at√

2
π

∫ ∞

0
r2dr jℓ(qr ) r ℓ exp(−

r2

2
)L

(ℓ+ 1
2 )

n (r2)

= (−1)n qℓ exp(−
q2

2
)L

(ℓ+ 1
2 )

n (q2).

This shows that the FB-transform produces the same function
with exchanged argument (r ↔ q) and eigenvalue (−1)n .
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