001     865283
005     20220930130219.0
024 7 _ |a 10.1016/j.biopsych.2019.08.031
|2 doi
024 7 _ |a 0006-3223
|2 ISSN
024 7 _ |a 1873-2402
|2 ISSN
024 7 _ |a 2128/23815
|2 Handle
024 7 _ |a altmetric:67027073
|2 altmetric
024 7 _ |a pmid:31748126
|2 pmid
024 7 _ |a WOS:000505773200013
|2 WOS
037 _ _ |a FZJ-2019-04803
082 _ _ |a 610
100 1 _ |a Chen, Ji
|0 P:(DE-Juel1)171414
|b 0
|u fzj
245 _ _ |a Neurobiological divergence of the positive and negative schizophrenia subtypes identified upon a new factor-structure of psychopathology using non-negative factorization: An international machine-learning study
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1578641980_24601
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This study was supported by the Deutsche Forschungsgemeinschaft (DFG, EI 816/4-1), the National Institute of Mental Health (R01-MH074457), the Helmholtz Portfolio Theme "Supercomputing and Modeling for the Human Brain", and the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1) and 785907 (HBP SGA2). Ji Chen has received a Ph.D fellowship from the Chinese Scholarship Council. Also, acknowledgment goes to Asadur Chowdury, PhD (Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, Michigan), who contributed to the early arrangement and communication of the Wayne-State dataset.
520 _ _ |a ObjectiveDisentangling psychopathological heterogeneity in schizophrenia is challenging and previous results remain inconclusive. We employed advanced machine-learning to identify a stable and generalizable factorization of the “Positive and Negative Syndrome Scale (PANSS)”, and used it to identify psychopathological subtypes as well as their neurobiological differentiations.MethodsPANSS data from the Pharmacotherapy Monitoring and Outcome Survey cohort (1545 patients, 586 followed up after 1.35±0.70 years) were used for learning the factor-structure by an orthonormal projective non-negative factorization. An international sample, pooled from nine medical centers across Europe, USA, and Asia (490 patients), was used for validation. Patients were clustered into psychopathological subtypes based on the identified factor-structure, and the neurobiological divergence between the subtypes was assessed by classification analysis on functional MRI connectivity patterns.ResultsA four-factor structure representing negative, positive, affective, and cognitive symptoms was identified as the most stable and generalizable representation of psychopathology. It showed higher internal consistency than the original PANSS subscales and previously proposed factor-models. Based on this representation, the positive-negative dichotomy was confirmed as the (only) robust psychopathological subtypes, and these subtypes were longitudinally stable in about 80% of the repeatedly assessed patients. Finally, the individual subtype could be predicted with good accuracy from functional connectivity profiles of the ventro-medial frontal cortex, temporoparietal junction, and precuneus.ConclusionsMachine-learning applied to multi-site data with cross-validation yielded a factorization generalizable across populations and medical systems. Together with subtyping and the demonstrated ability to predict subtype membership from neuroimaging data, this work further disentangles the heterogeneity in schizophrenia.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 1
|u fzj
700 1 _ |a Weis, Susanne
|0 P:(DE-Juel1)172811
|b 2
700 1 _ |a Sim, Kang
|b 3
700 1 _ |a Nickl-Jockschat, Thomas
|b 4
700 1 _ |a Zhou, Juan
|0 0000-0002-0180-8648
|b 5
700 1 _ |a Aleman, André
|b 6
700 1 _ |a Sommer, Iris E.
|b 7
700 1 _ |a Liemburg, Edith J.
|b 8
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 9
700 1 _ |a Habel, Ute
|0 P:(DE-Juel1)172840
|b 10
700 1 _ |a Derntl, Birgit
|b 11
700 1 _ |a Liu, Xiaojin
|b 12
700 1 _ |a Kogler, Lydia
|b 13
700 1 _ |a Regenbogen, Christina
|b 14
700 1 _ |a Diwadkar, Vaibhav A.
|b 15
700 1 _ |a Stanley, Jeffrey A.
|b 16
700 1 _ |a Riedl, Valentin
|b 17
700 1 _ |a Jardri, Renaud
|0 0000-0003-4596-1502
|b 18
700 1 _ |a Gruber, Oliver
|b 19
700 1 _ |a Sotiras, Aristeidis
|0 0000-0003-0795-8820
|b 20
700 1 _ |a Davatzikos, Christos
|b 21
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 22
|e Corresponding author
773 _ _ |a 10.1016/j.biopsych.2019.08.031
|g p. S000632231931707X
|0 PERI:(DE-600)1499907-9
|n 3
|p 282-293
|t Biological psychiatry
|v 83
|y 2020
|x 0006-3223
856 4 _ |u https://juser.fz-juelich.de/record/865283/files/Invoice_OAD0000012695.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/865283/files/1-s2.0-S000632231931707X-main.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/865283/files/Invoice_OAD0000012695.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/865283/files/1-s2.0-S000632231931707X-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865283
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171414
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172811
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)172840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOL PSYCHIAT : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BIOL PSYCHIAT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21