000865290 001__ 865290
000865290 005__ 20240711113924.0
000865290 0247_ $$2doi$$a10.1016/j.surfcoat.2019.06.065
000865290 0247_ $$2ISSN$$a0257-8972
000865290 0247_ $$2ISSN$$a1879-3347
000865290 0247_ $$2Handle$$a2128/23762
000865290 0247_ $$2WOS$$aWOS:000508497500033
000865290 037__ $$aFZJ-2019-04809
000865290 082__ $$a670
000865290 1001_ $$0P:(DE-Juel1)169774$$aRaumann, L.$$b0$$eCorresponding author
000865290 245__ $$aModeling and validation of chemical vapor deposition of tungsten for tungsten fiber reinforced tungsten composites
000865290 260__ $$aAmsterdam [u.a.]$$bElsevier Science84367$$c2020
000865290 3367_ $$2DRIVER$$aarticle
000865290 3367_ $$2DataCite$$aOutput Types/Journal article
000865290 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1577801464_13801
000865290 3367_ $$2BibTeX$$aARTICLE
000865290 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865290 3367_ $$00$$2EndNote$$aJournal Article
000865290 520__ $$aTungsten is the most promising first wall material for nuclear fusion reactors. One disadvantage, however, is its intrinsic brittleness. Therefore, tungsten fiber reinforced tungsten (Wf/W) is developed for extrinsic toughening. Wf/W can be produced by chemical vapor deposition (CVD), e.g. by reducing WF6 with H2 using heated W-fibers as substrate. However, it still needs to be optimized regarding relative density and fiber volume fraction. The decisive factor is the tungsten deposition rate, which depends on the temperature and the partial pressures. For this dependence, however, there are controversial results in the literature. In this article, a new rate equation is presented, in which different literature equations are partially adapted and combined. It adjusts the WF6 reaction order between one and zero, depending on the temperature and the H2 and WF6 partial pressure. For validation, a simplified experimental setup with a single fiber was designed, which provides very well defined boundary conditions while varying the CVD process parameters heating temperature, pressure, gas flow rate and gas inlet composition. The experimental runs were simulated with COMSOL Multiphysics. The model was successfully validated by measurements of the WF6 consumption rates (< 2 to 100 %), deposited tungsten masses and spatially high-resolved tungsten deposition rates.
000865290 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000865290 536__ $$0G:(EU-Grant)633053$$aEUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (633053)$$c633053$$fEURATOM-Adhoc-2014-20$$x1
000865290 588__ $$aDataset connected to CrossRef
000865290 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b1$$ufzj
000865290 7001_ $$0P:(DE-HGF)0$$aRiesch, J.$$b2
000865290 7001_ $$0P:(DE-Juel1)165931$$aMao, Y.$$b3$$ufzj
000865290 7001_ $$0P:(DE-HGF)0$$aGietl, H.$$b4
000865290 7001_ $$0P:(DE-HGF)0$$aHöschen, T.$$b5
000865290 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b6$$ufzj
000865290 7001_ $$0P:(DE-Juel1)161591$$aGuillon, O.$$b7$$ufzj
000865290 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2019.06.065$$gp. S0257897219306887$$p124745$$tSurface and coatings technology$$v381$$x0257-8972$$y2020
000865290 8564_ $$uhttps://juser.fz-juelich.de/record/865290/files/1-s2.0-S0257897219306887-main.pdf$$yRestricted
000865290 8564_ $$uhttps://juser.fz-juelich.de/record/865290/files/Raumann2019a_greenAccess.pdf$$yOpenAccess
000865290 8564_ $$uhttps://juser.fz-juelich.de/record/865290/files/Raumann2019a_greenAccess.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865290 8564_ $$uhttps://juser.fz-juelich.de/record/865290/files/1-s2.0-S0257897219306887-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865290 909CO $$ooai:juser.fz-juelich.de:865290$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000865290 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169774$$aForschungszentrum Jülich$$b0$$kFZJ
000865290 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b1$$kFZJ
000865290 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165931$$aForschungszentrum Jülich$$b3$$kFZJ
000865290 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b6$$kFZJ
000865290 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b7$$kFZJ
000865290 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000865290 9141_ $$y2020
000865290 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865290 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865290 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865290 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2017
000865290 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865290 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865290 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865290 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865290 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865290 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865290 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865290 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000865290 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865290 920__ $$lyes
000865290 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000865290 9801_ $$aFullTexts
000865290 980__ $$ajournal
000865290 980__ $$aVDB
000865290 980__ $$aUNRESTRICTED
000865290 980__ $$aI:(DE-Juel1)IEK-4-20101013
000865290 981__ $$aI:(DE-Juel1)IFN-1-20101013