001     865290
005     20240711113924.0
024 7 _ |a 10.1016/j.surfcoat.2019.06.065
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a 2128/23762
|2 Handle
024 7 _ |a WOS:000508497500033
|2 WOS
037 _ _ |a FZJ-2019-04809
082 _ _ |a 670
100 1 _ |a Raumann, L.
|0 P:(DE-Juel1)169774
|b 0
|e Corresponding author
245 _ _ |a Modeling and validation of chemical vapor deposition of tungsten for tungsten fiber reinforced tungsten composites
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science84367
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1577801464_13801
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tungsten is the most promising first wall material for nuclear fusion reactors. One disadvantage, however, is its intrinsic brittleness. Therefore, tungsten fiber reinforced tungsten (Wf/W) is developed for extrinsic toughening. Wf/W can be produced by chemical vapor deposition (CVD), e.g. by reducing WF6 with H2 using heated W-fibers as substrate. However, it still needs to be optimized regarding relative density and fiber volume fraction. The decisive factor is the tungsten deposition rate, which depends on the temperature and the partial pressures. For this dependence, however, there are controversial results in the literature. In this article, a new rate equation is presented, in which different literature equations are partially adapted and combined. It adjusts the WF6 reaction order between one and zero, depending on the temperature and the H2 and WF6 partial pressure. For validation, a simplified experimental setup with a single fiber was designed, which provides very well defined boundary conditions while varying the CVD process parameters heating temperature, pressure, gas flow rate and gas inlet composition. The experimental runs were simulated with COMSOL Multiphysics. The model was successfully validated by measurements of the WF6 consumption rates (< 2 to 100 %), deposited tungsten masses and spatially high-resolved tungsten deposition rates.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |a EUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (633053)
|0 G:(EU-Grant)633053
|c 633053
|f EURATOM-Adhoc-2014-20
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 1
|u fzj
700 1 _ |a Riesch, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mao, Y.
|0 P:(DE-Juel1)165931
|b 3
|u fzj
700 1 _ |a Gietl, H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Höschen, T.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 6
|u fzj
700 1 _ |a Guillon, O.
|0 P:(DE-Juel1)161591
|b 7
|u fzj
773 _ _ |a 10.1016/j.surfcoat.2019.06.065
|g p. S0257897219306887
|0 PERI:(DE-600)1502240-7
|p 124745
|t Surface and coatings technology
|v 381
|y 2020
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/865290/files/1-s2.0-S0257897219306887-main.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/865290/files/Raumann2019a_greenAccess.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/865290/files/Raumann2019a_greenAccess.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/865290/files/1-s2.0-S0257897219306887-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:865290
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169774
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21