
Extrapolated Stabilized Explicit Runge�Kutta

methods

J. Martín-Vaquero†, A. Kleefeld ∗

University of Salamanca. Salamanca. E37008 Spain†

Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre,

52425 Jülich, Germany∗

September 20, 2018

1 Introduction

Traditionally classical explicit methods have not been used for sti� ordinary
di�erential equations due to their stability limitations. However, very often,
the dimension is high and the eigenvalues of the Jacobian matrix are known to
be in a long narrow strip along the negative real axis. This situation typically
arises when discretizing spatially parabolic equations or hyperbolic-parabolic
equations such as advection-di�usion-reaction equations (with dominating dif-
fusion or reaction). In this case, stabilized explicit Runge-Kutta methods were
demonstrated to be very e�cient (see [1, 3, 4, 7] and references therein).

Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are pro-
posed, in this work, to solve multi-dimensional non-linear partial di�erential
equations (PDEs). For such methods it is necessary to evaluate the function nt

times per step, but the stability region is O(n2
t ). Hence, the computational cost

is O(nt) times lower than for a traditional explicit algorithm. In that way sti�
problems can be integrated by the use of simple explicit evaluations in which
case implicit methods usually had to be used.

We �rst calculate the �rst-order SERK method. Later, we compute the nu-
merical results of the initial value problem (IVP) by performing ni steps with
step size ∆ti to obtain y∆ti(x0 + h) := REi,1 from y(x0). We do these calcu-
lations with this method for various length-step values ∆t1 > ∆t2 > ∆t3 > . . .
(taking ∆ti = ∆t/ni, ni being a positive integer). This idea has been consid-
ered to develop fourth- (ESERK4, [6]) and �fth-order (ESERK5, [5]) ESERK
method.

During the next years, we are working in two di�erent issues:

∗e-mail: jesmarva@usal.es, a.kleefeld@fz-juelich.de

1



Modelling for Engineering & Human Behaviour 2018 2

i) We are planning to develop from second- to sixth-order codes based on
ESERK methods, and combine all of them in one code. In several papers,
including [6], the authors showed how depending on the prescribed tol-
erance, but also the sti�ness of the problem (and also some functions or
intervals considered), lower-order methods have better results sometimes,
and in others it was necessary to obtain good approximations faster.

ii) Since we need s stages to obtain the �rst-order stabilized explicit Runge-
Kutta approximation (RE1,1), the total number of function evaluations
of the fourth-order method is nt = 10s, and for the �fth-order scheme is
nt = 15s. To increase the speed of these higher-order methods, we are
working on parallelized versions of the codes described in [5, 6].

In this work, we brie�y explain how we derived sixth-order ESERK (ES-
ERK6) methods and how we are parallelizing all these codes: ESERK4, ES-
ERK5, and ESERK6 algorithms.

2 Stabilized Explicit Runge-Kutta methods

For the construction of these kinds of algorithms two problems need to be solved:

i) Finding stability functions with extended stability domains along the neg-
ative real axis;

ii) Finding explicit Runge-Kutta methods with those polynomials as stability
functions.

2.1 Stability functions with extended stability domains

The main ingredient for these methods is a Chebyshev polynomial of the �rst
kind:

Ts(x) = cos(s arccos(x)).

If we now consider

Rs,p(z) =
Ts(w0,s,p + w1,s,pz)

Ts(w0,s,p)
, w0,s,p = 1 +

µp

s2
, w0,s,p =

Ts(w0,s,p)

T ′

s(w0,s,p)
, (1)

(s being the number of stages and p the order of the �nal extrapolated scheme)
we obtain polynomials oscillating between −λp and λp in a region which is
O(s2), and Rs,p(z) = 1 + z +O(z2).

The parameter λp is always a value smaller than 1, which depends on the
order of convergence, p, of the �nal extrapolated method, see [6]. For example,
we calculated λ3 ≤ 0.368008, λ4 ≤ 0.311688, λ5 ≤ 0.277923, and λ6 ≤ 0.25658
numerically. We took µ4 = 27/16, µ5 = 192/100 and µ6 = 208/100 in Equation
(1) to develop fourth-, �fth- and sixth-order schemes, respectively.

As for the new sixth-order schemes, the number of stages of the built Runge-
Kutta methods were: s = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,



Modelling for Engineering & Human Behaviour 2018 3

20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600,
700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200,
3400, 3600, 3800, and 4000.

2.2 Derivation of the explicit Runge-Kutta method with

those stability functions

We �rst construct the �rst-order methods for s = qm using the following theo-
rem:

Theorem 1 Let the stabilized explicit Runge-Kutta method be:

g0 = y0,

g1 = g0 + α ·∆t · f(g0),

gj = 2gj−1 − gj−2 + 2α ·∆t · f(gj−1) j = 2, . . . ,m,

gm+1 = gm + α ·∆t · f(gm),

gj = 2gj−1 − gj−2 + 2α ·∆t · f(gj−1) j = m+ 2, . . . , 2m, (2)

. . .

g(q−1)m+1 = g(q−1)m + α ·∆t · f(g(q−1)m),

gj = 2gj−1 − gj−2 + 2α ·∆t · f(gj−1) j = (q − 1)m+ 2, . . . , s,

and y1 =
∑s

j=0 bjgj where α = α4 = 2/s2 for the fourth-order method, α =

α5 = 100/(49s2) for the �fth-order method, α6 = 100/(47s2); and bj are the
solutions of the linear system

Rs,p(z) = b0T0 +

q
∑

j=1

m
∑

i=1

(

bi+m(j−1)TiT
j−1
m

)

, (3)

where Ti = Ti(1 + αpz) are the shifted Chebyshev polynomials.

This algorithm has Rs,p(z) as its stability function and, therefore, it is �rst-

order accurate.

Later extrapolated techniques are employed to increase the order of con-
vergence of the methods, in our case we utilized the Aitken-Neville algorithm
with the �harmonic sequence�. Thus, for example, the previous fourth- (given as
RE4,4 = y(xn+1)+O(h4)), and �fth-order (RE5,5 = y(xn+1)+O(∆t5)) schemes
were calculated as:
- Fourth-order methods:

RE4,4 =
64y∆t/4(xn+1)− 81y∆t/3(xn+1) + 24y∆t/2(xn+1)− y∆t(xn+1)

6
.

- Fifth-order methods:

RE5,5 =
625y∆t/5(xn+1)− 1024y∆t/4(xn+1) + 486y∆t/3(xn+1)− 64y∆t/2(xn+1) + y∆t(xn+1)

24
.



Modelling for Engineering & Human Behaviour 2018 4

In the case of the new sixth-order schemes the Aitken-Neville algorithm
provides us the following formula:

RE6,6 = 324/5y∆t/6(xn+1)− 3125/24y∆t/5(xn+1)+

+256/3y∆t/4(xn+1)− 81/4y∆t/3(xn+1) + 4/3y∆t/2(xn+1)− 1/120y∆t(xn+1). (4)

Example: Let us consider the case p = 6 (order), s = 4 (number of stages),
m = 2, q = 2, with α6 = 100/(47s2) for all the sixth-order methods.

(1.) We �rst calculate R4(z) taking µ6 = 208/100 in (1). Precisely, we obtain
w0,4,6 = 1.13, and

w1,4,6 =
T4 (1.13)

T ′

4 (1.13)
= 0.136284,

and hence

R4(z) = 1 + z + 0.25853z2 + 0.02391z3 + 0.00072083z4.

(2.) Now, we can write R4(z) as a combination of the modi�ed Chebyshev
polynomials for x = 1 + 100z/(47s2):

R4(z) = 0.14788T0(x)− 0.82357T1(x) + 0.51564T2(x)+

+0.99979T3(x) + 0.16025T4(x).

(3.) The stabilized explicit Runge-Kutta �rst-order method (with R4(z) as
stability function) is derived applying equation (2).

(4.) We utilize Richardson extrapolation to obtain the higher-order scheme.
Let us suppose that y0 ≈ y(x0) is the solution previously obtained, and
∆t is the length step for the following iteration. Using the latter step, a
�rst-order approximation is obtained, S1,1 ≈ y(x0 +∆t). When we utilize
y0 and two steps of the �rst-order SERK scheme given in (3.), but with
∆t/2, then we obtain RE2,1, and so on. Finally we employ (4) to obtain
the sixth-order approximation RE6,6.

2.3 Parallelization of the ESERK schemes

The idea of the parallelization for ESERK schemes is very simple: it is possible
to calculate at the same time REi,1 = y∆t/i(xn+1) separately from REj,1 =
y∆t/j(xn+1) for di�erent values of i, j. At the same time, we know that the
computational cost of calculating REi,1 is proportional to the number of func-
tion evaluations necessary to calculate it: i× s. Hence, when the �nal order of
the ESERK method is even p = 4 or 6, we calculate REp,1 in one processor,
REp−1,1 and RE1,1 in another one, etc. And �nally REp/2,1 in the last one.



Modelling for Engineering & Human Behaviour 2018 5

If the �nal order of the ESERK method is odd, as with p = 5, we calculate
REp,1 in one processor, REp−1,1 and RE1,1 in another one, etc. For example,
for p = 5, we calculate RE5,1 in one processor, RE4,1 and RE1,1 in another
processor, and RE3,1 and RE2,1 in a third one. In this way, the computational
cost is proportional to 5s and not to 15s as in the sequential code.

2.4 Variable-step and number of stages algorithm

The step size estimation and stage number selection are similar to the ones given
for other similar schemes, but it is necessary to change the formulae according
to the order of the methods derived, see [5, 6] and references therein. First,
we select the step size in order to control the local error and then, later we
choose the minimum number of stages such that the stability properties are
satis�ed. The best results (for these extrapolated schemes) were obtained using
techniques described in [2] for (traditional) extrapolated methods.

3 Numerical example and conclusions

Let us consider the following two-dimensional non-linear problem from combus-
tion theory, see [8].

ut = d△u+
R

αδ
(1 + α− u)eδ(1−1/u), (5)

de�ned on the unit square for t ≥ 0. The problem is subjected to u(x, y, 0) = 1.
For t > 0 we consider Dirichlet boundary condition u = 1 at x = 1, y = 1, but
Neumann boundary condition at x = 0, y = 0. We used second-order schemes
to approximate the Neumann condition. The parameter values in this problem
are d = 2.5, α = 1, δ = 20, and R = 5. We used N = 600 equispaced nodes in
each variable and solved �rst in the interval [0, 1.45] and later from 1.45 to 1.48.

First, in Table 1, numerical results at tend = 1.45 (L∞ errors) are shown in
the upper part of the Table. In this interval the solution is very smooth as it
is explained in [8]. We can clearly see how, for tolerances 10−6 and 10−8, and
similar errors ∼ 10−5, 10−6, the number of steps given by ESERK5 are smaller
than with ESERK4, but the number of function evaluations and CPU times are
bigger in this interval. It is more di�cult to compare RKC with this table in
this interval, however for moderate tolerances is faster than the other two codes.

However, we also solved this problem at tend = 1.48, and calculated times,
Nfe and number of steps in the interval [1.45, 1.48]. We show these di�erences
in Table 1 (bottom part).

We show how the number of steps (with the three methods) is higher in the
small interval [1.45, 1.48] than previously in [0, 1.45]. It is caused because of the
sti� solution in this interval (see [8]), and this motivates the use of variable-step
algorithms with very sti� PDEs. However, the number of function evaluations,
and CPU times do not grow in the same proportion; obviously, the reason is all
these codes vary the number of stages to optimize the CPU times. Finally, in



Modelling for Engineering & Human Behaviour 2018 6

Interval Tolerance Method max. err. Time (s) NFE Steps
RKC 0.5151−2 393.24 40264 123

[0, 1.45] 10−6 ESERK4 0.2598−4 2368.47 243728 51
ESERK5 0.2208−4 2562.71 285750 34
RKC 0.2471−3 841.13 87300 545

[0, 1.45] 10−8 ESERK4 0.7085−6 3476.68 358539 122
ESERK5 0.9726−7 5709.96 418466 75

RKC 0.17970 57.75 9211 262
[1.45, 1.48] 10−6 ESERK4 0.9094−3 420.30 64712 112

ESERK5 0.7583−3 707.97 74171 71
RKC 0.8426−2 212.01 21040 1259

[1.45, 1.48] 10−8 ESERK4 0.2288−4 668.13 105674 314
ESERK5 0.3217−5 745.04 103212 177

Table 1: Maximal absolute error, CPU times, number of function evaluations,
steps, and maximal steps for the methods RKC, ESERK4, and ESERK5 for
[0, 1.45] (up), and [1.45, 1.48] (bottom).

this interval, for moderate errors < 10−5, 10−6 higher-order codes provide faster
more accurate solutions. This motivates that we want to combine ESERK codes
with di�erent convergence orders into one �nal code.

Acknowledgements

The authors acknowledge support from the University of Salamanca, through
the grant ID2017/096.

References

[1] A. Abdulle. Fourth order Chebyshev methods with recurrence relation. SIAM J.
Sci. Comput., 23(6):2041�2054, 2001.

[2] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Di�erential Equations
I (2nd Revised. Ed.): Nonsti� Problems. Springer-Verlag, New York, 1993.

[3] W. H. Hundsdorfer and J. G. Verwer. Numerical solution of time-dependent
advection-di�usion-reaction equations. Springer, Berlin, 2007.

[4] D. I. Ketcheson and A. J. Ahmadia. Optimal stability polynomials for numer-
ical integration of initial value problems. Commun. Appl. Math. Comput. Sci.,
7(2):247�271, 2012.

[5] J. Martín-Vaquero and A. Kleefeld. ESERK5: a �fth-order extrapolated stabi-
lized explicit Runge-Kutta method. Journal of Computational Physics (submitted),
2018.

[6] J. Martín-Vaquero and B. Kleefeld. Extrapolated stabilized explicit Runge�Kutta
methods. Journal of Computational Physics, 326:141�155, 2016.



Modelling for Engineering & Human Behaviour 2018 7

[7] B. Sommeijer, L. Shampine, and J. Verwer. RKC: An explicit solver for parabolic
PDEs. Journal of Computational and Applied Mathematics, 88(2):315�326, 1997.

[8] J. G. Verwer. Explicit Runge-Kutta methods for parabolic partial di�erential
equations. Appl. Numer. Math., 22(1�3):359�379, 1996.


