001     865331
005     20240619091252.0
024 7 _ |a 10.1109/JSEN.2019.2920345
|2 doi
024 7 _ |a WOS:000481964500023
|2 WOS
037 _ _ |a FZJ-2019-04831
082 _ _ |a 004
100 1 _ |a Gubin, Alexey I.
|0 0000-0002-8400-242X
|b 0
245 _ _ |a Quartz Whispering-Gallery-Mode Resonator With Microfluidic Chip as Sensor for Permittivity Measurement of Liquids
260 _ _ |a New York, NY
|c 2019
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1587373931_5747
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Studies of biological solutions require high measurement accuracy, the ability to detect low changes in substance concentration, and small amounts of the liquid under test. A microwave complex permittivity measurement technique based on a high-quality-factor whispering-gallery-mode resonator with a microfluidic chip allows small amounts of dielectric liquids to be investigated with high accuracy. An existing technique based on a sapphire resonator does not provide for a low-concentration detection limit for substances with low molecular weight. Here, we present an advanced technique based on a quartz dielectric resonator. The detection limit obtained for glucose in water solution was found to be about one order of magnitude lower for the quartz resonator cell than for the sapphire-resonator-based measurement cell. The limit is about or lower than the concentration of glucose in human blood. This fact means that the technique can be used as the sensor for investigations of biological solutions in the microwave range. A study of glucose, lactalbumin, and bovine serum albumin was successfully performed in the Ka -band using the developed sensor.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Protsenko, Irina A.
|0 0000-0002-0640-110X
|b 1
700 1 _ |a Barannik, Alexander A.
|0 0000-0003-2687-2205
|b 2
700 1 _ |a Vitusevich, Svetlana
|0 P:(DE-Juel1)128738
|b 3
|e Corresponding author
700 1 _ |a Lavrinovich, Alexandr A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cherpak, Nickolay T.
|0 0000-0001-5214-5015
|b 5
773 _ _ |a 10.1109/JSEN.2019.2920345
|g Vol. 19, no. 18, p. 7976 - 7982
|0 PERI:(DE-600)2052059-1
|n 18
|p 7976 - 7982
|t IEEE sensors journal
|v 19
|y 2019
|x 1530-437X
856 4 _ |u https://juser.fz-juelich.de/record/865331/files/08727495.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/865331/files/08727495.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:865331
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128738
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE SENS J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21