000865344 001__ 865344
000865344 005__ 20240619091252.0
000865344 0247_ $$2doi$$a10.3390/mi10100659
000865344 0247_ $$2Handle$$a2128/23944
000865344 0247_ $$2pmid$$apmid:31574944
000865344 0247_ $$2WOS$$aWOS:000494485000033
000865344 037__ $$aFZJ-2019-04843
000865344 082__ $$a620
000865344 1001_ $$0P:(DE-Juel1)172817$$aHondrich, Timm J. J.$$b0$$ufzj
000865344 245__ $$aImprovements of microcontact printing for micropatterned cell growth by contrast enhancements
000865344 260__ $$aBasel$$bMDPI$$c2019
000865344 3367_ $$2DRIVER$$aarticle
000865344 3367_ $$2DataCite$$aOutput Types/Journal article
000865344 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579532587_30828
000865344 3367_ $$2BibTeX$$aARTICLE
000865344 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865344 3367_ $$00$$2EndNote$$aJournal Article
000865344 520__ $$aPatterned neuronal cell cultures are important tools for investigating neuronal signal integration, network function, and cell–substrate interactions. Because of the variable nature of neuronal cells, the widely used coating method of microcontact printing is in constant need of improvements and adaptations depending on the pattern, cell type, and coating solutions available for a certain experimental system. In this work, we report on three approaches to modify microcontact printing on borosilicate glass surfaces, which we evaluate with contact angle measurements and by determining the quality of patterned neuronal growth. Although background toxification with manganese salt does not result in the desired pattern enhancement, a simple heat treatment of the glass substrates leads to improved background hydrophobicity and therefore neuronal patterning. Thirdly, we extended a microcontact printing process based on covalently linking the glass surface and the coating molecule via an epoxysilane. This extension is an additional hydrophobization step with dodecylamine. We demonstrate that shelf life of the silanized glass is at least 22 weeks, leading to consistently reliable neuronal patterning by microcontact printing. Thus, we compared three practical additions to microcontact printing, two of which can easily be implemented into a workflow for the investigation of patterned neuronal networks
000865344 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000865344 588__ $$aDataset connected to CrossRef
000865344 7001_ $$0P:(DE-HGF)0$$aDeußen, Oliver$$b1
000865344 7001_ $$0P:(DE-Juel1)176977$$aGrannemann, Caroline$$b2
000865344 7001_ $$0P:(DE-Juel1)173767$$aBrinkmann, Dominik$$b3$$ufzj
000865344 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4$$eCorresponding author
000865344 773__ $$0PERI:(DE-600)2620864-7$$a10.3390/mi10100659$$gVol. 10, no. 10, p. 659 -$$n10$$p659 -$$tMicromachines$$v10$$x2072-666X$$y2019
000865344 8564_ $$uhttps://juser.fz-juelich.de/record/865344/files/Invoice_MDPI_micromachines-594525_1089.29EUR.pdf
000865344 8564_ $$uhttps://juser.fz-juelich.de/record/865344/files/Invoice_MDPI_micromachines-594525_1089.29EUR.pdf?subformat=pdfa$$xpdfa
000865344 8564_ $$uhttps://juser.fz-juelich.de/record/865344/files/micromachines-10-00659.pdf$$yOpenAccess
000865344 8767_ $$8micromachines-594525$$92019-09-25$$d2019-09-25$$eAPC$$jZahlung erfolgt
000865344 909CO $$ooai:juser.fz-juelich.de:865344$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000865344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172817$$aForschungszentrum Jülich$$b0$$kFZJ
000865344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173767$$aForschungszentrum Jülich$$b3$$kFZJ
000865344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ
000865344 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000865344 9141_ $$y2019
000865344 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865344 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865344 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865344 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROMACHINES-BASEL : 2017
000865344 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000865344 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000865344 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865344 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865344 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865344 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865344 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000865344 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865344 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865344 920__ $$lyes
000865344 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000865344 9801_ $$aAPC
000865344 9801_ $$aFullTexts
000865344 980__ $$ajournal
000865344 980__ $$aVDB
000865344 980__ $$aUNRESTRICTED
000865344 980__ $$aI:(DE-Juel1)ICS-8-20110106
000865344 980__ $$aAPC
000865344 981__ $$aI:(DE-Juel1)IBI-3-20200312