000865357 001__ 865357
000865357 005__ 20230217124246.0
000865357 0247_ $$2doi$$a10.1016/j.camwa.2019.09.009
000865357 0247_ $$2ISSN$$a0097-4943
000865357 0247_ $$2ISSN$$a0898-1221
000865357 0247_ $$2Handle$$a2128/24254
000865357 0247_ $$2WOS$$aWOS:000517668200012
000865357 037__ $$aFZJ-2019-04852
000865357 082__ $$a510
000865357 1001_ $$0P:(DE-Juel1)165350$$aOtte, Philipp$$b0$$eCorresponding author
000865357 245__ $$aA structured approach to the construction of stable linear Lattice Boltzmann collision operator
000865357 260__ $$aOxford [u.a.]$$bPergamon Press$$c2020
000865357 264_1 $$2Crossref$$3print$$bElsevier BV$$c2020-03-01
000865357 264_1 $$2Crossref$$3print$$bElsevier BV$$c2020-03-01
000865357 3367_ $$2DRIVER$$aarticle
000865357 3367_ $$2DataCite$$aOutput Types/Journal article
000865357 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580907626_7428
000865357 3367_ $$2BibTeX$$aARTICLE
000865357 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865357 3367_ $$00$$2EndNote$$aJournal Article
000865357 520__ $$aWe introduce a structured approach to the construction of linear BGK-type collision operators ensuring that the resulting Lattice-Boltzmann methods are stable with respect to a weighted L2-norm. The results hold for particular boundary conditions including periodic, bounce-back, and bounce-back with flipping of sign boundary conditions. This construction uses the equivalent moment-space definition of BGK-type collision operators and the notion of stability structures as guiding principle for the choice of the equilibrium moments for those moments influencing the error term only but not the order of consistency. The presented structured approach is then applied to the 3D isothermal linearized Euler equations with non-vanishing background velocity. Finally, convergence results in the strong discrete L∞-norm highlight the suitability of the structured approach introduced in this manuscript.
000865357 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000865357 542__ $$2Crossref$$i2020-03-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000865357 588__ $$aDataset connected to CrossRef
000865357 7001_ $$0P:(DE-HGF)0$$aFrank, Martin$$b1
000865357 77318 $$2Crossref$$3journal-article$$a10.1016/j.camwa.2019.09.009$$bElsevier BV$$d2020-03-01$$n5$$p1447-1460$$tComputers & Mathematics with Applications$$v79$$x0898-1221$$y2020
000865357 773__ $$0PERI:(DE-600)2004251-6$$a10.1016/j.camwa.2019.09.009$$gp. S0898122119304572$$n5$$p1447-1460$$tComputers and mathematics with applications$$v79$$x0898-1221$$y2020
000865357 8564_ $$uhttps://arxiv.org/abs/1811.12212
000865357 8564_ $$uhttps://juser.fz-juelich.de/record/865357/files/1811.12212.pdf$$yOpenAccess
000865357 8564_ $$uhttps://juser.fz-juelich.de/record/865357/files/1811.12212.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865357 909CO $$ooai:juser.fz-juelich.de:865357$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865357 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165350$$aForschungszentrum Jülich$$b0$$kFZJ
000865357 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000865357 9141_ $$y2020
000865357 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865357 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865357 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865357 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT MATH APPL : 2015
000865357 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865357 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865357 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865357 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865357 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865357 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865357 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865357 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000865357 920__ $$lno
000865357 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000865357 980__ $$ajournal
000865357 980__ $$aVDB
000865357 980__ $$aUNRESTRICTED
000865357 980__ $$aI:(DE-Juel1)JSC-20090406
000865357 9801_ $$aFullTexts
000865357 999C5 $$1Geier$$2Crossref$$oGeier 2017$$y2017
000865357 999C5 $$1Kataoka$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.69.056702$$p056702 -$$tPhys. Rev. E$$v69$$y2004
000865357 999C5 $$1Chai$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.97.013304$$p013304 -$$tPhys. Rev. E$$v97$$y2018
000865357 999C5 $$1He$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.56.6811$$p6811 -$$tPhys. Rev. E$$v56$$y1997
000865357 999C5 $$1Boghosian$$2Crossref$$9-- missing cx lookup --$$a10.1098/rspa.2000.0689$$p717 -$$tProc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.$$v457$$y2001
000865357 999C5 $$1Chikatamarla$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.010201$$p010201 -$$tPhys. Rev. Lett.$$v97$$y2006
000865357 999C5 $$1Dubois$$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/2009/06/P06006$$pP06006 -$$tJ. Stat. Mech. Theory Exp.$$v2009$$y2009
000865357 999C5 $$1Dubois$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.camwa.2011.01.011$$p3404 -$$tComput. Math. Appl.$$v61$$y2011
000865357 999C5 $$1Otte$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.camwa.2015.12.004$$p311 -$$tComput. Math. Appl.$$v72$$y2016
000865357 999C5 $$1Bardos$$2Crossref$$9-- missing cx lookup --$$a10.1007/s002050000080$$p177 -$$tArch. Ration. Mech. Anal.$$v153$$y2000
000865357 999C5 $$1Banda$$2Crossref$$9-- missing cx lookup --$$a10.1137/040606211$$p2098 -$$tSIAM J. Sci. Comput.$$v27$$y2006
000865357 999C5 $$1Junk$$2Crossref$$9-- missing cx lookup --$$a10.1137/060675216$$p1651 -$$tSIAM J. Numer. Anal.$$v47$$y2009
000865357 999C5 $$1Rheinländer$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.camwa.2009.08.040$$p2150 -$$tComput. Math. Appl.$$v59$$y2010
000865357 999C5 $$1Yong$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.camwa.2009.02.010$$p862 -$$tComput. Math. Appl.$$v58$$y2009
000865357 999C5 $$1Yong$$2Crossref$$oYong 2001$$y2001
000865357 999C5 $$1Caiazzo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.camwa.2009.02.011$$p883 -$$tComput. Math. Appl.$$v58$$y2009
000865357 999C5 $$1Junk$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcp.2005.05.003$$p676 -$$tJ. Comput. Phys.$$v210$$y2005
000865357 999C5 $$1Yong$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.93.033310$$p033310 -$$tPhys. Rev. E$$v93$$y2016
000865357 999C5 $$2Crossref$$uFrançois Dubois, Tony Février, Benjamin Graille, Stability of a bidimensional relative velocity lattice boltzmann scheme. arXiv preprint arXiv:1506.02381, 2015.
000865357 999C5 $$1Otte$$2Crossref$$oOtte 2018$$y2018