001     865357
005     20230217124246.0
024 7 _ |a 10.1016/j.camwa.2019.09.009
|2 doi
024 7 _ |a 0097-4943
|2 ISSN
024 7 _ |a 0898-1221
|2 ISSN
024 7 _ |a 2128/24254
|2 Handle
024 7 _ |a WOS:000517668200012
|2 WOS
037 _ _ |a FZJ-2019-04852
082 _ _ |a 510
100 1 _ |a Otte, Philipp
|0 P:(DE-Juel1)165350
|b 0
|e Corresponding author
245 _ _ |a A structured approach to the construction of stable linear Lattice Boltzmann collision operator
260 _ _ |a Oxford [u.a.]
|c 2020
|b Pergamon Press
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2020-03-01
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2020-03-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1580907626_7428
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We introduce a structured approach to the construction of linear BGK-type collision operators ensuring that the resulting Lattice-Boltzmann methods are stable with respect to a weighted L2-norm. The results hold for particular boundary conditions including periodic, bounce-back, and bounce-back with flipping of sign boundary conditions. This construction uses the equivalent moment-space definition of BGK-type collision operators and the notion of stability structures as guiding principle for the choice of the equilibrium moments for those moments influencing the error term only but not the order of consistency. The presented structured approach is then applied to the 3D isothermal linearized Euler equations with non-vanishing background velocity. Finally, convergence results in the strong discrete L∞-norm highlight the suitability of the structured approach introduced in this manuscript.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
542 _ _ |i 2020-03-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Frank, Martin
|0 P:(DE-HGF)0
|b 1
773 1 8 |a 10.1016/j.camwa.2019.09.009
|b Elsevier BV
|d 2020-03-01
|n 5
|p 1447-1460
|3 journal-article
|2 Crossref
|t Computers & Mathematics with Applications
|v 79
|y 2020
|x 0898-1221
773 _ _ |a 10.1016/j.camwa.2019.09.009
|g p. S0898122119304572
|0 PERI:(DE-600)2004251-6
|n 5
|p 1447-1460
|t Computers and mathematics with applications
|v 79
|y 2020
|x 0898-1221
856 4 _ |u https://arxiv.org/abs/1811.12212
856 4 _ |u https://juser.fz-juelich.de/record/865357/files/1811.12212.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865357/files/1811.12212.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:865357
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165350
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT MATH APPL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts
999 C 5 |1 Geier
|y 2017
|2 Crossref
|o Geier 2017
999 C 5 |a 10.1103/PhysRevE.69.056702
|9 -- missing cx lookup --
|1 Kataoka
|p 056702 -
|2 Crossref
|t Phys. Rev. E
|v 69
|y 2004
999 C 5 |a 10.1103/PhysRevE.97.013304
|9 -- missing cx lookup --
|1 Chai
|p 013304 -
|2 Crossref
|t Phys. Rev. E
|v 97
|y 2018
999 C 5 |a 10.1103/PhysRevE.56.6811
|9 -- missing cx lookup --
|1 He
|p 6811 -
|2 Crossref
|t Phys. Rev. E
|v 56
|y 1997
999 C 5 |a 10.1098/rspa.2000.0689
|9 -- missing cx lookup --
|1 Boghosian
|p 717 -
|2 Crossref
|t Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
|v 457
|y 2001
999 C 5 |a 10.1103/PhysRevLett.97.010201
|9 -- missing cx lookup --
|1 Chikatamarla
|p 010201 -
|2 Crossref
|t Phys. Rev. Lett.
|v 97
|y 2006
999 C 5 |a 10.1088/1742-5468/2009/06/P06006
|9 -- missing cx lookup --
|1 Dubois
|p P06006 -
|2 Crossref
|t J. Stat. Mech. Theory Exp.
|v 2009
|y 2009
999 C 5 |a 10.1016/j.camwa.2011.01.011
|9 -- missing cx lookup --
|1 Dubois
|p 3404 -
|2 Crossref
|t Comput. Math. Appl.
|v 61
|y 2011
999 C 5 |a 10.1016/j.camwa.2015.12.004
|9 -- missing cx lookup --
|1 Otte
|p 311 -
|2 Crossref
|t Comput. Math. Appl.
|v 72
|y 2016
999 C 5 |a 10.1007/s002050000080
|9 -- missing cx lookup --
|1 Bardos
|p 177 -
|2 Crossref
|t Arch. Ration. Mech. Anal.
|v 153
|y 2000
999 C 5 |a 10.1137/040606211
|9 -- missing cx lookup --
|1 Banda
|p 2098 -
|2 Crossref
|t SIAM J. Sci. Comput.
|v 27
|y 2006
999 C 5 |a 10.1137/060675216
|9 -- missing cx lookup --
|1 Junk
|p 1651 -
|2 Crossref
|t SIAM J. Numer. Anal.
|v 47
|y 2009
999 C 5 |a 10.1016/j.camwa.2009.08.040
|9 -- missing cx lookup --
|1 Rheinländer
|p 2150 -
|2 Crossref
|t Comput. Math. Appl.
|v 59
|y 2010
999 C 5 |a 10.1016/j.camwa.2009.02.010
|9 -- missing cx lookup --
|1 Yong
|p 862 -
|2 Crossref
|t Comput. Math. Appl.
|v 58
|y 2009
999 C 5 |1 Yong
|y 2001
|2 Crossref
|o Yong 2001
999 C 5 |a 10.1016/j.camwa.2009.02.011
|9 -- missing cx lookup --
|1 Caiazzo
|p 883 -
|2 Crossref
|t Comput. Math. Appl.
|v 58
|y 2009
999 C 5 |a 10.1016/j.jcp.2005.05.003
|9 -- missing cx lookup --
|1 Junk
|p 676 -
|2 Crossref
|t J. Comput. Phys.
|v 210
|y 2005
999 C 5 |a 10.1103/PhysRevE.93.033310
|9 -- missing cx lookup --
|1 Yong
|p 033310 -
|2 Crossref
|t Phys. Rev. E
|v 93
|y 2016
999 C 5 |2 Crossref
|u François Dubois, Tony Février, Benjamin Graille, Stability of a bidimensional relative velocity lattice boltzmann scheme. arXiv preprint arXiv:1506.02381, 2015.
999 C 5 |1 Otte
|y 2018
|2 Crossref
|o Otte 2018


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21