000865364 001__ 865364
000865364 005__ 20240712084511.0
000865364 0247_ $$2doi$$a10.1039/C9NR02643F
000865364 0247_ $$2ISSN$$a2040-3364
000865364 0247_ $$2ISSN$$a2040-3372
000865364 0247_ $$2Handle$$a2128/23062
000865364 0247_ $$2altmetric$$aaltmetric:65823682
000865364 0247_ $$2pmid$$apmid:31475704
000865364 0247_ $$2WOS$$aWOS:000496763600012
000865364 037__ $$aFZJ-2019-04858
000865364 082__ $$a600
000865364 1001_ $$00000-0001-8494-3206$$aGallet, Thibaut$$b0
000865364 245__ $$aFermi-level pinning in methylammonium lead iodide perovskites
000865364 260__ $$aCambridge$$bRSC Publ.$$c2019
000865364 3367_ $$2DRIVER$$aarticle
000865364 3367_ $$2DataCite$$aOutput Types/Journal article
000865364 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570016267_15601
000865364 3367_ $$2BibTeX$$aARTICLE
000865364 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865364 3367_ $$00$$2EndNote$$aJournal Article
000865364 520__ $$aHybrid organic inorganic perovskites are ideal candidates for absorber layers in next generation thin film photovoltaics. The polycrystalline nature of these layers imposes substantial complications for the design of high efficiency devices since the optoelectronic properties can vary on the nanometre scale. Here we show via scanning tunnelling microscopy and spectroscopy that different grains and grain facets exhibit variations in the local density of states. Modeling of the tunneling spectroscopy curves allows us to quantify the density and fluctuations of surface states and estimate the variations in workfunction on the nanometre scale. The simulations corroborate that the high number of surface states leads to Fermi-level pinning of the methylammonium lead iodide surfaces. We do not observe a variation of the local density of states at the grain boundaries compared to the grain interior. These results are in contrast to other reported SPM measurements in literature. Our results show that most of the fluctuations of the electrical properties in these polycrystalline materials arise due to grain to grain variations and not due to distinct electronic properties of the grain boundaries. The measured workfunction changes at the different grains result in local variations of the band alignment with the carrier selective top contact and the varying number of surface states influence the recombination activity in the devices.
000865364 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000865364 588__ $$aDataset connected to CrossRef
000865364 7001_ $$0P:(DE-Juel1)169473$$aGrabowski, David$$b1
000865364 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b2
000865364 7001_ $$00000-0002-2958-3102$$aRedinger, Alex$$b3$$eCorresponding author
000865364 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C9NR02643F$$gVol. 11, no. 36, p. 16828 - 16836$$n36$$p16828 - 16836$$tNanoscale$$v11$$x2040-3372$$y2019
000865364 8564_ $$uhttps://juser.fz-juelich.de/record/865364/files/gallet19nanoscale.pdf$$yOpenAccess
000865364 8564_ $$uhttps://juser.fz-juelich.de/record/865364/files/gallet19nanoscale.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865364 909CO $$ooai:juser.fz-juelich.de:865364$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169473$$aForschungszentrum Jülich$$b1$$kFZJ
000865364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b2$$kFZJ
000865364 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000865364 9141_ $$y2019
000865364 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865364 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2017
000865364 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2017
000865364 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000865364 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865364 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865364 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865364 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865364 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865364 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865364 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000865364 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865364 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865364 920__ $$lyes
000865364 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000865364 9801_ $$aFullTexts
000865364 980__ $$ajournal
000865364 980__ $$aVDB
000865364 980__ $$aUNRESTRICTED
000865364 980__ $$aI:(DE-Juel1)IEK-5-20101013
000865364 981__ $$aI:(DE-Juel1)IMD-3-20101013