000865379 001__ 865379
000865379 005__ 20210130003028.0
000865379 0247_ $$2doi$$a10.1371/journal.pone.0220939
000865379 0247_ $$2Handle$$a2128/23025
000865379 0247_ $$2altmetric$$aaltmetric:64826291
000865379 0247_ $$2pmid$$apmid:31398234
000865379 0247_ $$2WOS$$aWOS:000485004000029
000865379 037__ $$aFZJ-2019-04864
000865379 082__ $$a610
000865379 1001_ $$00000-0002-1280-3906$$aZhang, Ke$$b0
000865379 245__ $$aVessel architecture imaging using multiband gradient-echo/spin-echo EPI
000865379 260__ $$aSan Francisco, California, US$$bPLOS$$c2019
000865379 3367_ $$2DRIVER$$aarticle
000865379 3367_ $$2DataCite$$aOutput Types/Journal article
000865379 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569575472_23255
000865379 3367_ $$2BibTeX$$aARTICLE
000865379 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865379 3367_ $$00$$2EndNote$$aJournal Article
000865379 520__ $$aObjectivesTo apply the MB (multiband) excitation and blipped-CAIPI (blipped-controlled aliasing in parallel imaging) techniques in a spin and gradient-echo (SAGE) EPI sequence to improve the slice coverage for vessel architecture imaging (VAI).Materials and methodsBoth MB excitation and blipped-CAIPI with in-plane parallel imaging were incorporated into a gradient-echo (GE)/spin-echo (SE) EPI sequence for simultaneous tracking of the dynamic MR signal changes in both GE and SE contrasts after the injection of contrast agent. MB and singleband (SB) excitation were compared using a 20-channel head coil at 3 Tesla, and high-resolution MB VAI could be performed in 32 glioma patients.ResultsWhole-brain covered high resolution VAI can be achieved after applying multiband excitation with a factor of 2 and in-plane parallel imaging with a factor of 3. The quality of the images resulting from MB acceleration was comparable to those from the SB method: images were reconstructed without any loss of spatial resolution or severe distortions. In addition, MB and SB signal-to-noise ratios (SNR) were similar. A relative low g-factor induced from the MB acceleration method was achieved after using a blipped-CAIPI technique (1.35 for GE and 1.33 for SE imaging). Performing quantitative VAI, we found that, among all VAI parametric maps, microvessel type indicator (MTI), distance map (I) and vascular-induced bolus peak-time shift (VIPS) were highly correlated. Likewise, VAI parametric maps of slope, slope length and short axis were highly correlated.ConclusionsMultiband accelerated SAGE successfully doubles the number of readout slices in the same measurement time when compared to conventional readout sequences. The corresponding VAI parametric maps provide insights into the complexity and heterogeneity of vascular changes in glioma.
000865379 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000865379 588__ $$aDataset connected to CrossRef
000865379 7001_ $$0P:(DE-Juel1)141899$$aYun, Seong Dae$$b1
000865379 7001_ $$0P:(DE-HGF)0$$aTriphan, Simon M. F.$$b2
000865379 7001_ $$0P:(DE-HGF)0$$aSturm, Volker J.$$b3
000865379 7001_ $$0P:(DE-HGF)0$$aBuschle, Lukas R.$$b4
000865379 7001_ $$0P:(DE-HGF)0$$aHahn, Artur$$b5
000865379 7001_ $$0P:(DE-HGF)0$$aHeiland, Sabine$$b6
000865379 7001_ $$0P:(DE-HGF)0$$aBendszus, Martin$$b7
000865379 7001_ $$0P:(DE-HGF)0$$aSchlemmer, Heinz-Peter$$b8
000865379 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b9
000865379 7001_ $$0P:(DE-HGF)0$$aZiener, Christian H.$$b10
000865379 7001_ $$0P:(DE-HGF)0$$aKurz, Felix T.$$b11$$eCorresponding author
000865379 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0220939$$gVol. 14, no. 8, p. e0220939 -$$n8$$pe0220939 -$$tPLOS ONE$$v14$$x1932-6203$$y2019
000865379 8564_ $$uhttps://juser.fz-juelich.de/record/865379/files/journal.pone.0220939-1.pdf$$yOpenAccess
000865379 8564_ $$uhttps://juser.fz-juelich.de/record/865379/files/journal.pone.0220939-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865379 909CO $$ooai:juser.fz-juelich.de:865379$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865379 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141899$$aForschungszentrum Jülich$$b1$$kFZJ
000865379 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b9$$kFZJ
000865379 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000865379 9141_ $$y2019
000865379 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865379 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000865379 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865379 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865379 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000865379 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2017
000865379 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000865379 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000865379 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865379 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865379 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865379 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865379 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865379 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865379 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865379 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000865379 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865379 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000865379 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000865379 980__ $$ajournal
000865379 980__ $$aVDB
000865379 980__ $$aUNRESTRICTED
000865379 980__ $$aI:(DE-Juel1)INM-4-20090406
000865379 980__ $$aI:(DE-82)080010_20140620
000865379 9801_ $$aFullTexts