001     865379
005     20210130003028.0
024 7 _ |a 10.1371/journal.pone.0220939
|2 doi
024 7 _ |a 2128/23025
|2 Handle
024 7 _ |a altmetric:64826291
|2 altmetric
024 7 _ |a pmid:31398234
|2 pmid
024 7 _ |a WOS:000485004000029
|2 WOS
037 _ _ |a FZJ-2019-04864
082 _ _ |a 610
100 1 _ |a Zhang, Ke
|0 0000-0002-1280-3906
|b 0
245 _ _ |a Vessel architecture imaging using multiband gradient-echo/spin-echo EPI
260 _ _ |a San Francisco, California, US
|c 2019
|b PLOS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1569575472_23255
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ObjectivesTo apply the MB (multiband) excitation and blipped-CAIPI (blipped-controlled aliasing in parallel imaging) techniques in a spin and gradient-echo (SAGE) EPI sequence to improve the slice coverage for vessel architecture imaging (VAI).Materials and methodsBoth MB excitation and blipped-CAIPI with in-plane parallel imaging were incorporated into a gradient-echo (GE)/spin-echo (SE) EPI sequence for simultaneous tracking of the dynamic MR signal changes in both GE and SE contrasts after the injection of contrast agent. MB and singleband (SB) excitation were compared using a 20-channel head coil at 3 Tesla, and high-resolution MB VAI could be performed in 32 glioma patients.ResultsWhole-brain covered high resolution VAI can be achieved after applying multiband excitation with a factor of 2 and in-plane parallel imaging with a factor of 3. The quality of the images resulting from MB acceleration was comparable to those from the SB method: images were reconstructed without any loss of spatial resolution or severe distortions. In addition, MB and SB signal-to-noise ratios (SNR) were similar. A relative low g-factor induced from the MB acceleration method was achieved after using a blipped-CAIPI technique (1.35 for GE and 1.33 for SE imaging). Performing quantitative VAI, we found that, among all VAI parametric maps, microvessel type indicator (MTI), distance map (I) and vascular-induced bolus peak-time shift (VIPS) were highly correlated. Likewise, VAI parametric maps of slope, slope length and short axis were highly correlated.ConclusionsMultiband accelerated SAGE successfully doubles the number of readout slices in the same measurement time when compared to conventional readout sequences. The corresponding VAI parametric maps provide insights into the complexity and heterogeneity of vascular changes in glioma.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yun, Seong Dae
|0 P:(DE-Juel1)141899
|b 1
700 1 _ |a Triphan, Simon M. F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sturm, Volker J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Buschle, Lukas R.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hahn, Artur
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Heiland, Sabine
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bendszus, Martin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Shah, N. Jon
|0 P:(DE-Juel1)131794
|b 9
700 1 _ |a Ziener, Christian H.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kurz, Felix T.
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1371/journal.pone.0220939
|g Vol. 14, no. 8, p. e0220939 -
|0 PERI:(DE-600)2267670-3
|n 8
|p e0220939 -
|t PLOS ONE
|v 14
|y 2019
|x 1932-6203
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/865379/files/journal.pone.0220939-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/865379/files/journal.pone.0220939-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865379
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)141899
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21