000865386 001__ 865386
000865386 005__ 20210130003034.0
000865386 0247_ $$2doi$$a10.1083/jcb.201811127
000865386 0247_ $$2ISSN$$a0021-9525
000865386 0247_ $$2ISSN$$a0095-9901
000865386 0247_ $$2ISSN$$a1540-8140
000865386 0247_ $$2ISSN$$a2327-7440
000865386 0247_ $$2Handle$$a2128/23050
000865386 0247_ $$2altmetric$$aaltmetric:62862597
000865386 0247_ $$2pmid$$apmid:31253650
000865386 0247_ $$2WOS$$aWOS:000478788200021
000865386 037__ $$aFZJ-2019-04871
000865386 082__ $$a570
000865386 1001_ $$00000-0003-1139-7755$$aKrueger, Daniel$$b0
000865386 245__ $$aCross-linker–mediated regulation of actin network organization controls tissue morphogenesis
000865386 260__ $$aNew York, NY$$bRockefeller Univ. Press$$c2019
000865386 3367_ $$2DRIVER$$aarticle
000865386 3367_ $$2DataCite$$aOutput Types/Journal article
000865386 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569918264_16323
000865386 3367_ $$2BibTeX$$aARTICLE
000865386 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865386 3367_ $$00$$2EndNote$$aJournal Article
000865386 520__ $$aContraction of cortical actomyosin networks driven by myosin activation controls cell shape changes and tissue morphogenesis during animal development. In vitro studies suggest that contractility also depends on the geometrical organization of actin filaments. Here we analyze the function of actomyosin network topology in vivo using optogenetic stimulation of myosin-II in Drosophila embryos. We show that early during cellularization, hexagonally arrayed actomyosin fibers are resilient to myosin-II activation. Actomyosin fibers then acquire a ring-like conformation and become contractile and sensitive to myosin-II. This transition is controlled by Bottleneck, a Drosophila unique protein expressed for only a short time during early cellularization, which we show regulates actin bundling. In addition, it requires two opposing actin cross-linkers, Filamin and Fimbrin. Filamin acts synergistically with Bottleneck to facilitate hexagonal patterning, while Fimbrin controls remodeling of the hexagonal network into contractile rings. Thus, actin cross-linking regulates the spatio-temporal organization of actomyosin contraction in vivo, which is critical for tissue morphogenesis.
000865386 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000865386 588__ $$aDataset connected to CrossRef
000865386 7001_ $$0P:(DE-HGF)0$$aQuinkler, Theresa$$b1
000865386 7001_ $$0P:(DE-Juel1)177743$$aMortensen, Simon Arnold$$b2$$ufzj
000865386 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b3$$ufzj
000865386 7001_ $$00000-0003-4764-2070$$aDe Renzis, Stefano$$b4$$eCorresponding author
000865386 773__ $$0PERI:(DE-600)1421310-2$$a10.1083/jcb.201811127$$gVol. 218, no. 8, p. 2743 - 2761$$n8$$p2743 - 2761$$tThe journal of cell biology$$v218$$x1540-8140$$y2019
000865386 8564_ $$uhttps://juser.fz-juelich.de/record/865386/files/2743.full.pdf$$yOpenAccess
000865386 8564_ $$uhttps://juser.fz-juelich.de/record/865386/files/2743.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865386 909CO $$ooai:juser.fz-juelich.de:865386$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865386 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-HGF)0$$aEuropean Molecular Biology Laboratory$$b1$$kEMBL
000865386 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177743$$aForschungszentrum Jülich$$b2$$kFZJ
000865386 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b3$$kFZJ
000865386 9101_ $$0I:(DE-588b)235011-7$$60000-0003-4764-2070$$aEuropean Molecular Biology Laboratory$$b4$$kEMBL
000865386 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000865386 9141_ $$y2019
000865386 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865386 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000865386 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865386 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CELL BIOL : 2017
000865386 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865386 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865386 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865386 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865386 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865386 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CELL BIOL : 2017
000865386 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865386 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000865386 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865386 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000865386 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865386 920__ $$lyes
000865386 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
000865386 980__ $$ajournal
000865386 980__ $$aVDB
000865386 980__ $$aUNRESTRICTED
000865386 980__ $$aI:(DE-Juel1)ER-C-3-20170113
000865386 9801_ $$aFullTexts