Home > Publications database > Cross-linker–mediated regulation of actin network organization controls tissue morphogenesis > print |
001 | 865386 | ||
005 | 20210130003034.0 | ||
024 | 7 | _ | |a 10.1083/jcb.201811127 |2 doi |
024 | 7 | _ | |a 0021-9525 |2 ISSN |
024 | 7 | _ | |a 0095-9901 |2 ISSN |
024 | 7 | _ | |a 1540-8140 |2 ISSN |
024 | 7 | _ | |a 2327-7440 |2 ISSN |
024 | 7 | _ | |a 2128/23050 |2 Handle |
024 | 7 | _ | |a altmetric:62862597 |2 altmetric |
024 | 7 | _ | |a pmid:31253650 |2 pmid |
024 | 7 | _ | |a WOS:000478788200021 |2 WOS |
037 | _ | _ | |a FZJ-2019-04871 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Krueger, Daniel |0 0000-0003-1139-7755 |b 0 |
245 | _ | _ | |a Cross-linker–mediated regulation of actin network organization controls tissue morphogenesis |
260 | _ | _ | |a New York, NY |c 2019 |b Rockefeller Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1569918264_16323 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Contraction of cortical actomyosin networks driven by myosin activation controls cell shape changes and tissue morphogenesis during animal development. In vitro studies suggest that contractility also depends on the geometrical organization of actin filaments. Here we analyze the function of actomyosin network topology in vivo using optogenetic stimulation of myosin-II in Drosophila embryos. We show that early during cellularization, hexagonally arrayed actomyosin fibers are resilient to myosin-II activation. Actomyosin fibers then acquire a ring-like conformation and become contractile and sensitive to myosin-II. This transition is controlled by Bottleneck, a Drosophila unique protein expressed for only a short time during early cellularization, which we show regulates actin bundling. In addition, it requires two opposing actin cross-linkers, Filamin and Fimbrin. Filamin acts synergistically with Bottleneck to facilitate hexagonal patterning, while Fimbrin controls remodeling of the hexagonal network into contractile rings. Thus, actin cross-linking regulates the spatio-temporal organization of actomyosin contraction in vivo, which is critical for tissue morphogenesis. |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Quinkler, Theresa |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Mortensen, Simon Arnold |0 P:(DE-Juel1)177743 |b 2 |u fzj |
700 | 1 | _ | |a Sachse, Carsten |0 P:(DE-Juel1)173949 |b 3 |u fzj |
700 | 1 | _ | |a De Renzis, Stefano |0 0000-0003-4764-2070 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1083/jcb.201811127 |g Vol. 218, no. 8, p. 2743 - 2761 |0 PERI:(DE-600)1421310-2 |n 8 |p 2743 - 2761 |t The journal of cell biology |v 218 |y 2019 |x 1540-8140 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/865386/files/2743.full.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/865386/files/2743.full.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:865386 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a European Molecular Biology Laboratory |0 I:(DE-588b)235011-7 |k EMBL |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)177743 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)173949 |
910 | 1 | _ | |a European Molecular Biology Laboratory |0 I:(DE-588b)235011-7 |k EMBL |b 4 |6 0000-0003-4764-2070 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CELL BIOL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J CELL BIOL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-3-20170113 |k ER-C-3 |l Strukturbiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-3-20170113 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|