000865395 001__ 865395
000865395 005__ 20240313103124.0
000865395 0247_ $$2Handle$$a2128/24851
000865395 037__ $$aFZJ-2019-04880
000865395 1001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b0$$eCorresponding author
000865395 245__ $$aConditions for wave trains in spiking neural networks
000865395 260__ $$c2019
000865395 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1570537778_4590
000865395 3367_ $$2ORCID$$aWORKING_PAPER
000865395 3367_ $$028$$2EndNote$$aElectronic Article
000865395 3367_ $$2DRIVER$$apreprint
000865395 3367_ $$2BibTeX$$aARTICLE
000865395 3367_ $$2DataCite$$aOutput Types/Working Paper
000865395 500__ $$a36 pages, 8 figures, 4 tables
000865395 520__ $$aSpatiotemporal patterns such as traveling waves are frequently observed in recordings of neural activity. The mechanisms underlying the generation of such patterns are largely unknown. Previous studies have investigated the existence and uniqueness of different types of waves or bumps of activity using neural-field models, phenomenological coarse-grained descriptions of neural-network dynamics. But it remains unclear how these insights can be transferred to more biologically realistic networks of spiking neurons, where individual neurons fire irregularly. Here, we employ mean-field theory to reduce a microscopic model of leaky integrate-and-fire (LIF) neurons with distance-dependent connectivity to an effective neural-field model. In contrast to existing phenomenological descriptions, the dynamics in this neural-field model depends on the mean and the variance in the synaptic input, both determining the amplitude and the temporal structure of the resulting effective coupling kernel. For the neural-field model we employ linear stability analysis to derive conditions for the existence of spatial and temporal oscillations and wave trains, that is, temporally and spatially periodic traveling waves. We first prove that wave trains cannot occur in a single homogeneous population of neurons, irrespective of the form of distance dependence of the connection probability. Compatible with the architecture of cortical neural networks, wave trains emerge in two-population networks of excitatory and inhibitory neurons as a combination of delay-induced temporal oscillations and spatial oscillations due to distance-dependent connectivity profiles. Finally, we demonstrate quantitative agreement between predictions of the analytically tractable neural-field model and numerical simulations of both networks of nonlinear rate-based units and networks of LIF neurons.
000865395 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000865395 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000865395 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000865395 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000865395 536__ $$0G:(GEPRIS)233510988$$aDFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)$$c233510988$$x4
000865395 536__ $$0G:(DE-82)ZUK2-SF$$aERS Seed Fund (ZUK2) - Exploratory Research Space: Seed Fund (2) als Anschubfinanzierung zur Erforschung neuer interdisziplinärer Ideen (ZUK2-SF)$$cZUK2-SF$$x5
000865395 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x6
000865395 536__ $$0G:(DE-HGF)HGF-YoungInvestigatorsGroup$$aHelmholtz Young Investigators Group (HGF-YoungInvestigatorsGroup)$$cHGF-YoungInvestigatorsGroup$$x7
000865395 7001_ $$0P:(DE-Juel1)162473$$aKorvasová, Karolína$$b1
000865395 7001_ $$0P:(DE-HGF)0$$aSchuecker, Jannis$$b2
000865395 7001_ $$0P:(DE-Juel1)164166$$aHagen, Espen$$b3
000865395 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b4
000865395 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b5
000865395 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b6
000865395 8564_ $$uhttps://arxiv.org/abs/1801.06046v2
000865395 8564_ $$uhttps://juser.fz-juelich.de/record/865395/files/1801.06046v2.pdf$$yOpenAccess
000865395 8564_ $$uhttps://juser.fz-juelich.de/record/865395/files/1801.06046v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865395 909CO $$ooai:juser.fz-juelich.de:865395$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000865395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b0$$kFZJ
000865395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162473$$aForschungszentrum Jülich$$b1$$kFZJ
000865395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b4$$kFZJ
000865395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b5$$kFZJ
000865395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b6$$kFZJ
000865395 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000865395 9141_ $$y2019
000865395 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865395 920__ $$lno
000865395 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000865395 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000865395 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000865395 9801_ $$aFullTexts
000865395 980__ $$apreprint
000865395 980__ $$aVDB
000865395 980__ $$aUNRESTRICTED
000865395 980__ $$aI:(DE-Juel1)INM-6-20090406
000865395 980__ $$aI:(DE-Juel1)IAS-6-20130828
000865395 980__ $$aI:(DE-Juel1)INM-10-20170113
000865395 981__ $$aI:(DE-Juel1)IAS-6-20130828