000865448 001__ 865448
000865448 005__ 20240711113931.0
000865448 0247_ $$2doi$$a10.1088/1741-4326/ab1f2c
000865448 0247_ $$2ISSN$$a0029-5515
000865448 0247_ $$2ISSN$$a1741-4326
000865448 0247_ $$2altmetric$$aaltmetric:62018736
000865448 0247_ $$2WOS$$aWOS:000471633500002
000865448 0247_ $$2Handle$$a2128/23416
000865448 037__ $$aFZJ-2019-04899
000865448 082__ $$a620
000865448 1001_ $$0P:(DE-Juel1)172057$$aTogo, Satoshi$$b0$$eCorresponding author
000865448 245__ $$aSelf-consistent simulation of supersonic plasma flows in advanced divertors
000865448 260__ $$aVienna$$bIAEA$$c2019
000865448 3367_ $$2DRIVER$$aarticle
000865448 3367_ $$2DataCite$$aOutput Types/Journal article
000865448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569917991_15601
000865448 3367_ $$2BibTeX$$aARTICLE
000865448 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865448 3367_ $$00$$2EndNote$$aJournal Article
000865448 520__ $$aAdvanced divertors gain larger plasma wetted area by poloidal or total flux expansion. Qualitative characteristics of supersonic plasma flows which are generated by the magnetic nozzle effect are studied by using a plasma fluid model incorporating anisotropic ion pressure (AIP model). The AIP model can self-consistently simulate supersonic plasma flows because, unlike the widely-used plasma fluid model (the Braginskii equations), the equation of parallel plasma momentum in it is described as a hyperbolic-type and the plasma flow velocity is solved without using explicit boundary conditions at the sheath entrance in front of divertor plates. In comparisons of plasma profiles between the AIP model and the Braginskii equations, it is observed that the plasma flow velocity in the Braginskii equations is forced to the sound speed at the sheath entrance in conditions of decelerating supersonic plasma flows leading to qualitative deviations with the AIP model. In an application of the AIP model to a scrape-off layer/divertor region incorporating super-X divertors with various flux-expansion ratios, supersonic plasma flows in divertor regions and highly anisotropic ion temperatures are successfully simulated. It is also demonstrated that it becomes easier with the AIP model to explain the mechanisms of generations of supersonic plasma flows and acceleration/deceleration of them (including stationary shock waves) in flux-expanding divertors from the mirror effect point of view.
000865448 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000865448 588__ $$aDataset connected to CrossRef
000865448 7001_ $$0P:(DE-HGF)0$$aTakizuka, Tomonori$$b1
000865448 7001_ $$0P:(DE-Juel1)5017$$aReiser, Dirk$$b2
000865448 7001_ $$0P:(DE-HGF)0$$aSakamoto, Mizuki$$b3
000865448 7001_ $$0P:(DE-HGF)0$$aEzumi, Naomichi$$b4
000865448 7001_ $$0P:(DE-HGF)0$$aOgawa, Yuichi$$b5
000865448 7001_ $$0P:(DE-HGF)0$$aNojiri, Kunpei$$b6
000865448 7001_ $$00000-0001-8171-1928$$aIbano, Kenzo$$b7
000865448 7001_ $$0P:(DE-Juel1)176208$$aLi, Yue$$b8
000865448 7001_ $$0P:(DE-HGF)0$$aNakashima, Yousuke$$b9
000865448 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/ab1f2c$$gVol. 59, no. 7, p. 076041 -$$n7$$p076041 -$$tNuclear fusion$$v59$$x1741-4326$$y2019
000865448 8564_ $$uhttps://juser.fz-juelich.de/record/865448/files/Togo_2019_Nucl._Fusion_59_076041.pdf$$yRestricted
000865448 8564_ $$uhttps://juser.fz-juelich.de/record/865448/files/Togo_2019_Nucl._Fusion_59_076041.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865448 8564_ $$uhttps://juser.fz-juelich.de/record/865448/files/NF_final.pdf$$yPublished on 2019-06-13. Available in OpenAccess from 2020-06-13.
000865448 8564_ $$uhttps://juser.fz-juelich.de/record/865448/files/NF_final.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-06-13. Available in OpenAccess from 2020-06-13.
000865448 909CO $$ooai:juser.fz-juelich.de:865448$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172057$$aForschungszentrum Jülich$$b0$$kFZJ
000865448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5017$$aForschungszentrum Jülich$$b2$$kFZJ
000865448 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000865448 9141_ $$y2019
000865448 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865448 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865448 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000865448 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2017
000865448 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865448 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865448 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865448 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865448 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865448 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865448 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000865448 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000865448 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865448 920__ $$lyes
000865448 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000865448 9801_ $$aFullTexts
000865448 980__ $$ajournal
000865448 980__ $$aVDB
000865448 980__ $$aUNRESTRICTED
000865448 980__ $$aI:(DE-Juel1)IEK-4-20101013
000865448 981__ $$aI:(DE-Juel1)IFN-1-20101013