001     865448
005     20240711113931.0
024 7 _ |a 10.1088/1741-4326/ab1f2c
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a altmetric:62018736
|2 altmetric
024 7 _ |a WOS:000471633500002
|2 WOS
024 7 _ |a 2128/23416
|2 Handle
037 _ _ |a FZJ-2019-04899
082 _ _ |a 620
100 1 _ |a Togo, Satoshi
|0 P:(DE-Juel1)172057
|b 0
|e Corresponding author
245 _ _ |a Self-consistent simulation of supersonic plasma flows in advanced divertors
260 _ _ |a Vienna
|c 2019
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1569917991_15601
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Advanced divertors gain larger plasma wetted area by poloidal or total flux expansion. Qualitative characteristics of supersonic plasma flows which are generated by the magnetic nozzle effect are studied by using a plasma fluid model incorporating anisotropic ion pressure (AIP model). The AIP model can self-consistently simulate supersonic plasma flows because, unlike the widely-used plasma fluid model (the Braginskii equations), the equation of parallel plasma momentum in it is described as a hyperbolic-type and the plasma flow velocity is solved without using explicit boundary conditions at the sheath entrance in front of divertor plates. In comparisons of plasma profiles between the AIP model and the Braginskii equations, it is observed that the plasma flow velocity in the Braginskii equations is forced to the sound speed at the sheath entrance in conditions of decelerating supersonic plasma flows leading to qualitative deviations with the AIP model. In an application of the AIP model to a scrape-off layer/divertor region incorporating super-X divertors with various flux-expansion ratios, supersonic plasma flows in divertor regions and highly anisotropic ion temperatures are successfully simulated. It is also demonstrated that it becomes easier with the AIP model to explain the mechanisms of generations of supersonic plasma flows and acceleration/deceleration of them (including stationary shock waves) in flux-expanding divertors from the mirror effect point of view.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Takizuka, Tomonori
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Reiser, Dirk
|0 P:(DE-Juel1)5017
|b 2
700 1 _ |a Sakamoto, Mizuki
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ezumi, Naomichi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ogawa, Yuichi
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nojiri, Kunpei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ibano, Kenzo
|0 0000-0001-8171-1928
|b 7
700 1 _ |a Li, Yue
|0 P:(DE-Juel1)176208
|b 8
700 1 _ |a Nakashima, Yousuke
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1088/1741-4326/ab1f2c
|g Vol. 59, no. 7, p. 076041 -
|0 PERI:(DE-600)2037980-8
|n 7
|p 076041 -
|t Nuclear fusion
|v 59
|y 2019
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/865448/files/Togo_2019_Nucl._Fusion_59_076041.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/865448/files/Togo_2019_Nucl._Fusion_59_076041.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-06-13. Available in OpenAccess from 2020-06-13.
|u https://juser.fz-juelich.de/record/865448/files/NF_final.pdf
856 4 _ |y Published on 2019-06-13. Available in OpenAccess from 2020-06-13.
|x pdfa
|u https://juser.fz-juelich.de/record/865448/files/NF_final.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865448
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172057
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)5017
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21