001     865449
005     20240711113931.0
024 7 _ |a 10.1103/PhysRevE.100.033312
|2 doi
024 7 _ |a 1063-651X
|2 ISSN
024 7 _ |a 1095-3787
|2 ISSN
024 7 _ |a 1538-4519
|2 ISSN
024 7 _ |a 1539-3755
|2 ISSN
024 7 _ |a 1550-2376
|2 ISSN
024 7 _ |a 2470-0045
|2 ISSN
024 7 _ |a 2470-0053
|2 ISSN
024 7 _ |a 2128/23053
|2 Handle
024 7 _ |a WOS:000487738200011
|2 WOS
024 7 _ |a altmetric:67749414
|2 altmetric
024 7 _ |a pmid:31639987
|2 pmid
037 _ _ |a FZJ-2019-04900
082 _ _ |a 530
100 1 _ |a Reiser, Dirk
|0 P:(DE-Juel1)5017
|b 0
|e Corresponding author
245 _ _ |a Model discovery for studies of surface morphological modifications based on Kuramoto-Sivashinsky dynamics
260 _ _ |a Woodbury, NY
|c 2019
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2019-09-23
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2019-09-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1569918588_15601
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A wide range of observations in studies of surfaces exposed to ion beams can be explained and analyzed successfully by continuum models of the Kuramoto-Sivashinsky type. Despite certain progress in the theoretical understanding of the model parameters on the basis of atomistic models, much of the applications are based on phenomenological determination of several unknown quantities. In this work a numerical tool is discussed and investigated, which allows us to determine model coefficients and complex model structures from experimental findings. The method resembles known approaches in machine learning and data-driven reconstruction techniques. To keep the discussion on a fundamental level, numerical simulations are conducted by employing a scaled test model. The reconstruction technique is demonstrated for this model system and shows a high accuracy in recovering input parameters for situations without beam noise. As an application to an unknown system to be explored, the algorithm is then applied to a system with lognormal distributed ion bombardment. The impact of the beam fluctuations in the proposed model are discussed. Perspectives of the numerical algorithm for an analysis of experimental data are addressed.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
542 _ _ |i 2019-09-23
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
773 1 8 |a 10.1103/physreve.100.033312
|b American Physical Society (APS)
|d 2019-09-23
|n 3
|p 033312
|3 journal-article
|2 Crossref
|t Physical Review E
|v 100
|y 2019
|x 2470-0045
773 _ _ |a 10.1103/PhysRevE.100.033312
|g Vol. 100, no. 3, p. 033312
|0 PERI:(DE-600)2844562-4
|n 3
|p 033312
|t Physical review / E
|v 100
|y 2019
|x 2470-0045
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/865449/files/PhysRevE.100.033312.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/865449/files/PhysRevE.100.033312.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865449
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5017
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV E : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
999 C 5 |a 10.1116/1.575561
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0094-5765(77)90096-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/PTP.54.687
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0168-583X(02)01436-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.74.4746
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. Keller
|y 2012
|2 Crossref
|t Computational Nanotechnology
|o A. Keller Computational Nanotechnology 2012
999 C 5 |a 10.5488/CMP.14.23602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.82.061108
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.54.3577
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/21/22/224020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.026101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.mser.2014.09.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.56.889
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.83.3486
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 D. Reiser
|y 2018
|2 Crossref
|t Proceedings 45st EPS Conference on Plasma Physics, Prague, Czech Republic
|o D. Reiser Proceedings 45st EPS Conference on Plasma Physics, Prague, Czech Republic 2018
999 C 5 |a 10.1103/PhysRevLett.83.5262
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.62.1716
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.65.3576
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.86.1550
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.153412
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.066101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1402-4896/aa8db2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rspa.2016.0446
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jcp.2017.11.039
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/sciadv.1602614
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rsta.2011.0550
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1517384113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jmp.2018.03.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF02163027
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00031305.1982.10482771
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1090/S0025-5718-1962-0150954-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01048097
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.868089
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.869201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.40.3381
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jcp.2003.11.025
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.121.020601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.246104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.40.6763
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.205408
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21