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A wide range of observations in studies of surfaces exposed to ion beams can be explained and analyzed

successfully by continuum models of the Kuramoto-Sivashinsky type. Despite certain progress in the theoretical

understanding of the model parameters on the basis of atomistic models, much of the applications are

based on phenomenological determination of several unknown quantities. In this work a numerical tool is

discussed and investigated, which allows us to determine model coefficients and complex model structures

from experimental findings. The method resembles known approaches in machine learning and data-driven

reconstruction techniques. To keep the discussion on a fundamental level, numerical simulations are conducted

by employing a scaled test model. The reconstruction technique is demonstrated for this model system and

shows a high accuracy in recovering input parameters for situations without beam noise. As an application to

an unknown system to be explored, the algorithm is then applied to a system with lognormal distributed ion

bombardment. The impact of the beam fluctuations in the proposed model are discussed. Perspectives of the

numerical algorithm for an analysis of experimental data are addressed.
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I. INTRODUCTION

This paper deals with the interplay of fluctuating plasma

or ion beams and material surfaces where erosion takes place

due to the according bombardment with high energetic ions.

As in previous studies, a continuum model is employed to get

insight into the particular changes in morphology and plasma-

wall interaction for macroscopic dimensions of the target

material [1–21]. The implementation of beam fluctuations is

usually taken into account by inclusion of a random term

describing additive noise. However, most of the coefficients

in the continuum models depend on the material properties

and on the ion-beam characteristics as well. Therefore, in

this work a modified Kuramoto-Sivashinsky (KS) equation

is derived which reflects the beam fluctuations via fluctuat-

ing coefficients describing the morphology-dependent erosion

processes. A second and perhaps even more important point of

this paper is the detailed description of a method to identify

surface models of the KS type. The ultimate goal of this

numerical tool is the analysis of future experimental data

to complement ab initio theories for atomistic processes by

half-empirical methods. In this work the basic algorithm is

introduced and its suitability is demonstrated for the analysis

of surface dynamics with and without ion-beam fluctuations.

Currently missing experimental data are replaced by simula-

tion results in this initial study. For this preparatory work a de-

tailed statistical analysis of the reconstruction and data-driven

model discovery is presented. In Sec. II an introduction to the

Kuramoto-Sivashinsky dynamics is given and, after that, in

Sec. III, the inclusion of beam fluctuations by multiplicative

noise is elucidated. The method to reconstruct or discover

a surface model from the given data is detailed in Sec. IV

and in Sec. V numerical results are presented for systems

with and without beam fluctuations. The beam fluctuations are

chosen to be lognormally distributed with prescribed temporal

correlation. Simulations taking into account different choices

for the noise are compared with cases of constant model

coefficients. The characterization of the results is done by

means of pattern inspection, Fourier analysis, and probability

distribution functions for the surface height. It is found that the

results can show a strong change in the surface morphology

as a function of the fluctuation parameters, i.e., fluctuation

amplitude and correlation time. With respect to the model

discovery method discussed here, the important result is the

possibility of a quite accurate reconstruction of model param-

eters for cases with and without beam fluctuations. Statistical

analysis of the reconstructed model parameters gives some

hints on possible optimization of the numerical approach

based on a careful adjustment of sampling time with respect

to characteristic timescales of the physical system considered.

II. CONTINUUM MODEL FOR SURFACE EVOLUTION

In this section a quite general continuum model is dis-

cussed, which contains several models discussed in the lit-

erature as limiting cases. The surface structure of a material

exposed to the plasma beam is described by the surface

height function h = h(x, y), where x and y are the Cartesian

coordinates in the reference plane defined by the unmodified

flat surface. The evolution of the surface height is assumed to

be given by an equation of the form

∂h

∂t
= v − a(h − h) − bh +

∑

i=x,y

γi∂ih +
∑

i=x,y

νi∂iih

+
∑

i, j=x,y

Ki j∂ii∂ j jh +
∑

i=x,y

λi(∂ih)2 + η. (1)
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Here h denotes the x-y-averaged profile. The coefficient v

is a constant erosion rate. The rate coefficient a represents

a flattening effect, pushing the surface height to the average

height profile h and the rate coefficient b introduces a tendency

of the system to keep the averaged height at zero. The coeffi-

cients νi denote the surface tension and the terms proportional

to λi describe a slope-dependent erosion. The coefficients

Ki j are components of a symmetric diffusion matrix and the

related terms introduce surface diffusion. The coefficients γi

represent an advective motion of surface structures and, in

many model variants, an anisotropic advection with γy = 0

and a finite γx is introduced to describe grazing incidence of

the ion beam. For normal incidence the ion beam induced ad-

vection disappears, giving γi = 0 [4–6]. An additional random

contribution is denoted by η and represents an additive noise

introduced to mimic the fluctuations of the ion beam. One

finds for a periodic domain that the average height h obeys

the evolution equation

∂h

∂t
= v − bh +

∑

i=x,y

λi(∂ih)2 + η. (2)

For the structured piece h̃ = h − h one obtains the evolution

equation

∂ h̃

∂t
= ṽ − ãh +

∑

i=x,y

γi∂ih̃ +
∑

i=x,y

νi∂iih̃ +
∑

i, j=x,y

Ki j∂ii∂ j j h̃

+
∑

i=x,y

λi(∂ih̃)2 −
∑

i=x,y

λi(∂ih̃)2 + η̃. (3)

It can be concluded from Eq. (3) that the homogeneous

component h does not affect the dynamics of h̃ because h does

not appear on the right-hand side. On the contrary the spatially

averaged profile h is affected by the inhomogeneous piece h̃

via the slope-dependent terms proportional to the coefficients

λi, as can be seen from the evolution equation Eq. (2). There-

fore, the damping coefficient a changes the dynamics of the

morphology represented by h̃, whereas the damping term bh

affects the average height h only. This is of importance for the

numerical studies presented in the subsequent sections. There

a damping term with finite b is chosen, but a damping via

the term ãh is excluded because it is known that this would

have a strong impact on the dynamics [20]. In general it can

be said that the model defined by Eq. (1) is suitable for a

variety of applications. Equation (1) includes a large number

of effects considered to be relevant for morphological changes

due to erosion, surface diffusion, additive noise of the ion-

beam flux, and other effects. Actually it represents a damped

Kuramoto-Sivashinsky equation, and continuum models like

Eq. (1) and variants of it have been discussed extensively in

the literature (see Refs. [1–14] and references therein). There

were many attempts to relate the model parameters appearing

in KS continuum models with microscopic processes or to

extract their particular values from experiments. According

to Makeev et al. [4] the coefficients γi, νi, and λi in the KS

model (1) can be expressed as functions of the incident angle

of the ions and atomistic parameters such as penetration depth,

distribution width, etc. Another example of a set of coeffi-

cients based on microscopic theory has been published by

Cuerno and Barabási [5]. Derived from Sigmund’s sputtering

theory, they also obtained formulas for v, νi, and λi. Lauritsen

et al. considered a microscopic model for ion sputtering and

derived expressions for v, νi, λi, Ki j , and the noise term γ in

Ref. [9]. Muñoz-García et al. [10] derived model coefficients

from a two-field model and Sigmund’s sputtering theory.

A semi-empirical approach has been discussed by Muñoz-

García et al. [11]. They derived model coefficients νi, λi, Ki j

(and in addition the coefficient σi j introduced in their model)

from analytical estimates and experimental data. In summary,

Eq. (1) comprises several models used in the literature to link

experimental data and fundamental microscopic processes on

the plasma-beam-exposed surface. The need for an accurate

determination of model coefficients was also the motivation

for the development of model discovery techniques such

as the one presented here. However, despite the success of

models like Eq. (1), in many cases it has become necessary

to include further effects in the continuum description of

surface dynamics. This is still an ongoing discussion, and

a very comprehensive overview of such extensions, current

issues, and more refined theoretical approaches can be found

in Ref. [12]. A few possible extensions of Eq. (1) are discussed

in Appendix B where the candidate model for the model

discovery method is elucidated.

III. INCLUSION OF BEAM FLUCTUATIONS

In this section the KS model (1) will be simplified to obtain

a model with convenient scaling properties while still being

relevant for realistic experimental conditions; namely, normal

incidence of the ion beam. In this work—and in contrast to

previous studies—ion-beam fluctuations are not considered

by incorporation of an additive noise, i.e., a particular choice

for the stochastic term η in Eq. (1). Instead of that it is as-

sumed that η = 0 and that the coefficients νi and λi represent-

ing the erosion process are strictly proportional to the beam

flux. This introduces multiplicative noise to the model system.

Moreover, it is assumed that Ki j is constant, i.e., surface

diffusion is independent of the impinging ions. To simplify

matters it is also assumed that the ions hit the surface under

normal incidence and that the surface has no anisotropies.

Due to the symmetry of the assumptions made the number

of coefficients in the model is strongly reduced: γx = γy = 0,

νx = νy = ν, λx = λy = λ, Kxx = Kxy = Kyx = Kyy = K . For

normal incidence the coefficients γx and γy are expected to

vanish due to their dependence on the angle of incidence of the

ion beam [4–6]. It should be noted that these simplifications

do not restrict the flexibility of the model reconstruction

introduced in the next section. The simplifications are only

introduced for the purpose of making the discussions clearer

while still maintaining a realistic physical picture. Next, the

fluctuating coefficients ν and λ and the plasma beam flux

J are split according to ν = 〈ν〉 + ν̃, λ = 〈λ〉 + λ̃, and J =
〈J〉 + J̃ , respectively. The bracket 〈· · · 〉 denotes a temporal

average. Finally, a damping term proportional to h is included

to control the average height, which is pushed to zero in the

simulations. As mentioned above and shown by Eqs. (2) and

(3), this kind of damping has an impact only on the evolution

of the averaged height h but it does not change the dynamics

of the surface morphology, i.e., the structured piece h̃, which
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is actually in the focus of this work. Note that this is very

different to a damping via the term proportional to a in Eq. (1).

This term would have a strong impact on the dynamics as

discussed, e.g., in Ref. [20]. Here such an effect is excluded

from the model. Thus, the basic test model considered here

reads

∂h

∂t
= −ν∇

2h +
λ

2
(∇h)2 − K∇

2
∇

2h − bh

= −
[
ν0∇

2h −
λ0

2
(∇h)2

]
〈J〉
J0

− bh

−
[
ν0∇

2h −
λ0

2
(∇h)2

]
J̃

J0

− K0∇
2
∇

2h. (4)

The reference flux J0 has been introduced and ν0 and λ0 are

the corresponding constant model coefficients. The diffusion

coefficient K0 = K is a constant, too, and, as mentioned

above, it does not depend on the beam flux. Using K0 instead

of K only serves to make the notation uniform. It is to

be stressed again that the reduced model of Eq. (4) misses

several effects which are considered to be of importance in

many experiments. Besides additional effects mentioned in

Appendix B the additive noise η is often considered as crucial

to explain experimental observations (see, e.g., Ref. [21]).

However, the model considered here is an attempt to focus

on the effect of multiplicative noise with temporal correlation

and to test the model discovery method elucidated in the next

section. In future applications the model discovery method

allows us to analyze data in the framework of the full can-

didate model listed in Appendix B. Therefore, it would also

be able to identify effects which have been neglected in the

preparatory tests of this work. After this remark, the derivation

of the reduced KS model will be finalized by rewriting Eq. (4)

using the convenient scaling h → ν0/λ0h, x →
√

K0/ν0x,

t → K0/ν
2
0 t to obtain the dimensionless equation

∂h

∂t
= −

[
∇

2h −
1

2
(∇h)2

]
〈J〉
J0

−
bK0

ν2
0

h

−
[
∇

2h −
1

2
(∇h)2

]
J̃

J0

− ∇
2
∇

2h. (5)

Due to this scaling, a large variety of model systems can

be studied by considering Eq. (5) with varying statistics of

the scaled beam flux J/J0. To give an impression of the

dimensions hidden behind the scaling, typical values for the

characterization of the Si − Ar+ system from Ref. [11] are

quoted: For a flux of J0 = 6.00 × 1018 ions m−2 s−1 the model

coefficients have been found to be ν0 = 1.67 × 10−1 nm2/s,

λ0 = 1.00 × 10−1 nm/s and K0 = 2.60 nm4/s. This gives for

the scaling length and timescales of the system: ν0/λ0 =
1.67 nm,

√
K0/ν0 = 3.95 nm, and τ0 = K0/ν

2
0 = 93.60 s. At

this point the reference timescale τ0 is introduced for later

considerations. Note that the linear analysis of instabilities for

small perturbations in the height h, with λ = 0 and negligible

beam noise η gives for Eq. (4) a most unstable mode with

wave number k∗ and corresponding growth rate γ∗ and length

scale l∗. These are given by

k∗ =
√

ν

4K
, γ∗ =

ν2

4K
, l∗ = 4π

√
K

ν
. (6)

Therefore, fluctuations in the beam will have an impact on

the linear scales of the system due to the variation of surface

tension ν. In this work and according to previous findings

for plasma beam fluctuations [22], the scaled flux z = J/J0

is assumed to obey a lognormal distribution f (z) specified by

f (z) =
1

z
√

2πσ 2
exp

[
−

(ln z − µ)2

2σ 2

]
. (7)

Its first and second moments are

〈z〉 =
〈

J

J0

〉
= eµ+σ 2/2, (8)

〈(z − 〈z〉)2〉 =
〈

J̃2

J2
0

〉
= e2µ+2σ 2 − e2µ+σ 2

. (9)

The parameters µ and σ are determined by prescribing the

mean value of the scaled flux 〈J/J0〉 and its scaled variance

〈J̃2/J2
0 〉, respectively:

µ = ln

〈
J

J0

〉
−

1

2
ln

(
1 +

〈
J̃2/J2

0

〉

〈J/J0〉2

)
, (10)

σ 2 = ln

(
1 +

〈
J̃2/J2

0

〉

〈J/J0〉2

)
. (11)

The parameters µ and σ are used to generate a Gaussian

random variable Y with mean µ and variance σ 2 numerically.

Finally, the assignment Z = eY gives the desired random

variable Z having a lognormal distribution. Details on the

numerical generation of lognormal noise ψ with temporal

correlation are given in Appendix A. This generated noise is

used to describe the fluctuations of the ion flux, J/J0 = ψ .

IV. MODEL RECONSTRUCTION AND MODEL

DISCOVERY

The following section is devoted to a topic that could be

described as the “inverse simulation approach.” This term

distinguishes the method from a “forward simulation” in

which equations such as Eq. (1), (4), or (5) are solved in order

to compare the results with the experimental findings. The

forward method then tries to optimize the simulations as sys-

tematically as possible by selecting suitable model parameters

and thus to improve the agreement with the measurements. An

inverse approach would be to look at a large number of exper-

imental findings and use them to adapt a mathematical model

that would best describe the data. This resembles the standard

regression problem of curve fitting, but here it is meant that

a model defined by a partial differential equation similar to

Eq. (1) is subject to a fit procedure. Such approaches have

been discussed in the context of machine learning and data-

driven statistical methods (see Refs. [23–28] and references

therein). Also in studies of interfaces, a least-squares method

very similar to the one presented here has already been

discussed in Refs. [16,17]. However, although the method

of this work has many similarities with ideas discussed in

connection with Gaussian process regression in Ref. [24] and

essential points of the approach have already been presented

in Refs. [25,27] and especially in Refs. [16,17], it will be

outlined here in detail for reasons of clarity. In addition, the
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method applied here differs in a few but significant numerical

details from previous studies, and this may allow a higher

accuracy than similar approaches would suggest. Since the

focus is on the analysis of surface structures in ion-beam

experiments by the use of continuum models, the method is

introduced by starting with an evolution equation similar to

Eq. (1). The discretization is done with respect to a spatial

grid consisting of points xk , k = 1, . . . , N , in the x-y plane:

∂h(xk )

∂t
=

P∑

i=1

αi fi(xk ). (12)

Here P is the number of terms constituting the right-hand side

of the assumed mathematical model description and the αi are

constant model parameters. The functions fi are assumed to

be polynomials of the height function h and its derivatives,

i.e., ∂ih, ∂i jh, (∂ih)2, etc. An example of such a candidate

model is given Eq. (B1) in Appendix B, which defines the

discovery model [actually the right-hand side of Eq. (12)]

used in this work. It is important to note that the stochastic

term η in Eq. (1) is excluded from the set of functions fi.

Here, only deterministic terms are taken into account. Now,

the discretized model of Eq. (12) is rewritten by defining

Tk =
∂h(xk )

∂t
, Hki = fi(xk ). (13)

This gives for Eq. (12) a matrix equation

H · α = T , (14)

where H ∈ R
N×P, α ∈ R

P, T ∈ R
N , and P < N . The number

of grid points N is assumed to be larger than the number

of model parameters P. Therefore, an overdetermined set of

linear equations for the parameters αi is considered. One can

proceed using a singular value decomposition (SVD) [29,30]

to decompose the matrix H as

H = U · S · V T, (15)

where U ∈ R
N×N and V ∈ R

P×P are orthonormal matrices.

The matrix S ∈ R
N×P has r nonzero components on the

diagonal only. These define the singular values σ1, σ2, ..., σr ,

r � P. The other diagonal elements are σi = 0 for i > r. The

squared singular values σ 2
i are the eigenvalues of the products

HT · H and H · HT, as can be seen from the relations

H · HT = U · S · ST · UT, HT · H = V · ST · S · V T, (16)

where S · ST ∈ R
N×N and ST · S ∈ R

P×P are diagonal square

matrices with diagonal elements σ 2
1 , σ 2

2 , ..., σ 2
r , r � P. For the

purpose of solving Eq. (14), the pseudoinverse H+ is defined

by

H+ = V · S+ · UT, (17)

where S+ has nonzero components on the diagonal only and

these are given by the inverse of the singular values σi of S,

except where the singular values are zero, there also S+ has

a zero entry. The solution α that minimizes the functional D

defined by

D = |H · α − T |2 (18)

is called the optimal solution α
+, and it can be shown that this

is given by [29]

α
+ = H+ · T . (19)

The practical implementation of this approach is in the eval-

uation of the matrix components (13) and the subsequent

calculation of the least-squares parameters α+
i by Eq. (19).

A single reconstruction requires the evaluation of Tk and

Hki by the use of “snapshots” of the discrete height profiles

ht (xk ) and ht+τ� (xk ) at two subsequent time points t and

t + τ�. This allows us to approximate the matrix components

of time derivatives T t
k = (ht+τ�

k
− ht

k )/τ�. The corresponding

components of H t
ki are found by finite differences on the

x-y grid using the profile ht (xk ). Note that the parameter

τ� denotes the time interval between the snapshots, which

might be very different from the time step �t used in the

numerical solution of the model equation Eq. (5) to generate

the snapshots in the following sections. In future applications

this parameter will be dictated by the experimental conditions.

In this work, however, it is possible to select it arbitrarily

and compare it with the typical system times. Inserting the

results for the optimal parameters α+
i into Eq. (12) (in its

continuous version) then represents the regression model.

This is exemplified in the next sections. At this point, it

is necessary to comment on the relationship between this

method and the method presented in Ref. [16]. In fact, despite

differences in application and numerical details, both methods

can be regarded as the result of the same basic idea; namely,

discretizing a model equation like that defined in Eq. (12) and

minimizing an error functional, which in the notation used

here is given by Eq. (18). Minimizing D with respect to the

parameters αi gives the matrix equation

HT · H · α = HT · T . (20)

This is the basic equation solved in Ref. [16], but no further

details on the numerical scheme are given there. It is reason-

able to assume, and this interpretation has also been discussed

in Ref. [17], that the least-squares solution in Ref. [16] was

calculated by inversion of the matrix HT · H via

α
∗ = (HT · H )−1 · HT · T . (21)

Here, this solution is denoted by α
∗ to distinguish it from α

+.

As long as the matrix HT · H is nonsingular, i.e., all singular

values σi are nonzero, this is exactly the same result as given

by Eq. (19). Although this looks like only a minor limitation at

first, in practice it is found that the matrix H , and consequently

the matrix HT · H , is often ill-conditioned, i.e., a few singular

values σi are orders of magnitude smaller than the rest and the

matrix HT · H is “almost singular.” This leads quite often to

significant numerical errors in the computation of the optimal

parameters αi when using Eq. (21) (see, e.g., Ref. [30]). In the

cases considered here these errors were of the order of at least

10% or even led to extreme numerical outliers. This problem

is avoided in the approach elucidated in this section by the use

of the pseudo-inverse H+ to find the least-squares minimizing

solution α
+. Note that an alternative method to find optimal

model parameters has been proposed in Ref. [17], which

has certain advantages over least-squares methods like the

one presented here and in Ref. [16]. However, this approach

has been derived for the case of Kardar-Parisi-Zhang (KPZ)
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models. For the particular application in model discovery

intended in this work, a least-squares method seems to be the

natural and simplest choice.

V. SIMULATION OF SURFACE MORPHOLOGY

AND RECONSTRUCTION ANALYSIS

In this section the surface dynamics in the framework of

model (5) is discussed. First, cases without beam fluctuations

are considered for reference. In later sections the impact of

beam fluctuations is discussed as well. In both cases the

simulation results for the two-dimensional profiles of the

surface height h are used as an input for the model regression

method presented in Sec. IV. Time-dependent profiles of

the surface height h for cases with zero beam fluctuations,

J̃ = 0, serve as a benchmark test to prove the quality of the

regression. Since these data originate from a well-defined

dynamical system, the algorithm should reconstruct the input

parameters of Eq. (5) without errors. In further applications of

the model regression analysis the profiles for finite ion-beam

fluctuations are considered. These will serve as noisy input

and the assumption of a deterministic model in the regression

provides approximate and time-dependent coefficients which

mimic the stochastic evolution of the surface morphology.

Therefore, it is also an example of extracting effective model

coefficients, even if the staked frame of the assumed model

is approximate. For the numerical analysis, a surface of size

L × L is considered, where L = 100
√

K0/ν0. The reference

plane is discretized by using 128 × 128 grid points. The time

integration of Eq. (5) was done by the explicit second-order

Ralston’s method [Eq. (3.5) in Ref. [31]] with time step

�t = 10−3τ0. For the integration of the evolution equation (5)

with finite beam fluctuations included no particular stochas-

tic analysis was used. Although the fluctuating coefficients

were evaluated by using the relations from Appendix A, i.e.,

J/J0 = ψ , obtained from known stochastic integrals of the

Itô calculus, the coefficients thus determined were regarded

as smooth functions of time and the resulting integrals to

advance the height function h in time were evaluated in the

Riemann sense. This is similar to approaches in numerical

studies of passive scalars where a stochastic velocity field is

generated according to stochastic calculus and the resulting

advection equations are integrated over time with an explicit

Euler method [32–34]. The damping coefficient is chosen

as b = 102τ−1
0 to keep the averaged height h effectively at

zero. This serves just for numerical convenience by avoiding

a continuously increasing mean value h due to the terms

proportional to λi in Eq. (2). A cross-check with simulations

where b = 0 showed that the dynamics of the structured piece

h̃ is indeed unaffected.

A. Cases without beam fluctuations

In the first part of this numerical study of surface dy-

namics and model reconstruction three cases with constant

beam amplitude are considered. These are characterized by

〈J/J0〉 = 0.5, 1.0, 1.5 and J̃ = 0. The choice is guided by the

amplitude of beam fluctuations studied in the next section.

The values 〈J/J0〉 = 0.5 and 〈J/J0〉 = 1.5 can considered as

approximate limiting values for the coefficients fluctuating

around the reference case with 〈J/J0〉 = 1.0.

1. Analysis of surface morphology

The simulations are initialized with a noisy height pro-

file of very small amplitude. These perturbations lead to a

growth of unstable structures and at a certain level nonlinear

processes provide a saturation in the local fluctuations of the

surface height. To get some insight into the dynamics of the

model systems the layer thickness W is used to characterize

the temporal evolution of the surface morphology. It is defined

by by the variance of the height fluctuations,

W =
√

h2 − h
2
. (22)

As can be seen in Fig. 1, in all three cases, statistically station-

ary states result after a growth phase with exponential increase

of W , which is guided by linear physics. This exponential

growth for small times t corresponds to the linear growth rate

γ∗ = 〈J/J0〉2/(4τ0), which is a function of the beam flux due

to γ∗ ∼ ν2. Straight line fit functions in the semilogarithmic

plot of Fig. 1 clearly demonstrate the expected time depen-

dence. In the nonlinear phase the layer thickness W fluctuates

around a mean value 〈W 〉 ≈ 4ν0/λ0, whereby all three cases

show similar behavior. If one considers the probability distri-

bution PDF(h) in Fig. 2 for the fluctuations of the height h in

the statistically stationary state, similar distributions appear in

all three cases. The PDFs can be approximated very accurately

by Gaussian distributions, as shown by the regression curves.

Looking at the morphology of the respective surfaces in Fig. 3,

however, clear differences can be seen in the structure of the

surface patterns. The variation of 〈J/J0〉 obviously leads to

an enlargement of pattern size for 〈J/J0〉 < 1 and a reduction

for 〈J/J0〉 > 1 when compared with the reference case with

〈J/J0〉 = 1. This is in accordance with the scaling of the

most unstable mode found in the linear analysis: l∗ ∼ ν−1/2 ∼
〈J/J0〉−1/2. Since the mean deviation of the height is almost

the same in all cases, the quantity W cannot be used to distin-

guish the different morphological features. However, a clear

distinction can be achieved by looking at the mean squared

gradient |∇h|2. The squared Fourier components |ci j |2 of the

gradient are displayed in Fig. 4. They are defined by

|∇h|2 =
∑

m,n

(
m2k2

x + n2k2
y

)
|hm,n|2 ≡

∑

m,n

|cm,n|2, (23)

where hm,n denotes the Fourier components of the height

function h and kx = ky = 2π/L. This representation clearly

reflects the change in the structures. The enlarged pattern size

for 〈J/J0〉 < 1 corresponds to a circular pattern in Fourier

space peaked at smaller wave numbers than the reference

case with 〈J/J0〉 = 1. For 〈J/J0〉 > 1 the situation is reversed.

To underline the usefulness of this quantity for the analysis

here and in subsequent sections, Fig. 5 shows the evolution

of |∇h|2 over time analogous to W in Fig. 1. The different

saturation levels are well separated at |∇h|2 = 2.5, 4.9, and

7.2 ν3
0 K−1

0 λ−2
0 . This corresponds to the change of pattern size

by a factor of two when comparing the figures in Fig. 3. Note

that, for a single dominant mode, Eq. (23) gives immediately

a relation for the average pattern size l̄2 ∼ W 2/|∇h|2. Now,
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FIG. 1. Panel (a) shows the temporal evolution of the layer

thickness W for the cases with constant beam flux characterized by

〈J/J0〉 = 0.5, 1.0, 1.5 and 〈J̃2〉 = 0. The reference time is defined by

τ0 = K0/ν
2
0 . The saturation level 〈W 〉 ≈ 4ν0/λ0 is almost the same

for all cases. The exponential growth for small times t corresponds

to the beam flux dependence of the linear growth rate γ∗ of Eq. (6).

To illustrate this panel (b) shows a semilogarithmic plot of the same

time traces as in the top figure with fit functions (giving the straight

lines) included. According to linear theory the fit functions were cho-

sen as f (t ) = b exp(γ∗t ), where γ∗ = 〈J/J0〉2/(4τ0 ). Fit parameters

found are b = 9.6 × 10−4, b = 1.5 × 10−3, and b = 2.0 × 10−3 for

〈J/J0〉 = 0.5, 1.0, 1.5, respectively. Therefore, the straight lines in

the semilogarithmic plot become steeper as 〈J/J0〉 increases.

the results of Figs. 1 and 3 might be compared with the

experimental data of Ref. [11], where normal beam incidence

has also been considered. In Ref. [11], model parameters

have been extracted from experimental data illustrated by

Figs. 1 and 2 there. Pattern sizes ℓl ∼ 35 nm and timescales

tl ∼ 6.25 min were found, where the timescale tl represents a

growth rate, similar to t∗ = γ −1
∗ in this work. Using the num-
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FIG. 2. Distribution functions PDF(h) for the cases with constant

beam flux characterized by 〈J/J0〉 = 0.5, 1.0, 1.5 and 〈J̃2〉 = 0

(dashed lines). Gaussian fits are also shown in the figure for all three

cases based on the first and second moments computed for the time

traces of h (solid lines). The statistical analysis was performed for

the saturated and statistically stationary state.

bers of Sec. III of this work for ν0, λ0, and K0 and the results

for the temporal evolution of W for 〈J/J0〉 = 1, as illustrated

by Fig. 1, one obtains τ∗ ∼ 6.25 min. This is identical to tl but,

of course, this is not too surprising, because the numbers for

ν0, λ0, and K0 have been taken from Muñoz-García’s work.

However, the model discussed by Muñoz-García differs from

the one used here and the results prove the accuracy of the

simulation results at least for the initial phase, where linear

effects dominate. But, also for the nonlinearly saturated phase,

one finds by simple dot pattern inspection of Fig. 3 of this

work an average pattern size of l̄ ∼ 34 nm. This is fairly close

to the value of ℓl given in Ref. [11]. Finally, note that the

hexagonal nanodot patterns of Fig. 1 in Ref. [11] and of Fig. 1

of this work look quite similar.

2. Analysis of reconstructed model coefficients ν, λ, K

The simulation results for the temporal development of

the surfaces for the three examples without ion-beam fluctua-

tions are now used for the model reconstruction described in

Sec. IV. For the reconstruction an extended evolution equation

for the height h has been used. The detailed ansatz is given by

Eq. (B1) in Appendix B which defines the “discovery model,”

where far more terms are considered than were included in

the simulations based on Eq. (5) to provide the snapshots.

As mentioned in Appendix B, a few of these additional terms

have been discussed in the literature as possible and important

extensions of KS models. But, for the present study based

on the simulations with the model defined by Eq. (5), these

terms also serve to test the accuracy of the method in such

cases when complicated but irrelevant effects are included in

the model identification. Indeed, it has been proven that the

reconstruction algorithm is able to determine the relevant co-

efficients with high accuracy and to identify irrelevant terms.
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FIG. 3. Snapshots of the morphological structure for the cases

with constant beam flux characterized by (a) 〈J/J0〉 = 0.5, (b) 1.0,

(c) 1.5 and 〈J̃2〉 = 0. The domain size is chosen as L =
100K

1/2

0 /ν
1/2

0 . The change in the size of the patterns follows the

scaling l∗ ∼ ν−1/2 ∼ 〈J/J0〉−1/2.

This is demonstrated by an example of numerical results listed

in Table I in Appendix B. For the reconstruction analysis in

this section 200 snapshots from the simulations were used.

According to the elucidation of the reconstruction technique

in Sec. IV two consecutive snapshots with a time interval of τ�

were used for a single evaluation of the model coefficients. By
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FIG. 4. Shown are the squared components |ci j |2 of the time-

averaged squared gradient |∇h|2 in m-n wave-number plane for the

cases with constant beam flux characterized by (a) 〈J/J0〉 = 0.5,

(b) 1.0, (c) 1.5 and 〈J̃2〉 = 0. The Fourier decomposition is given by

Eq. (23). The change in structural size displayed in Fig. 3 is reflected

by circular patterns of different radii.

repeating the evaluation for the entire series of 200 snapshots

available a series of model parameters is obtained. The results

for the 199 reconstructions of the coefficient λ, obtained for

the reference case with 〈J/J0〉 = 1, are shown in Fig. 6. It

can be seen that the choice of the temporal increment τ�

033312-7



D. REISER PHYSICAL REVIEW E 100, 033312 (2019)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600

|∇
h
|2

 /
 (

ν
0

3
λ

0
-2
K

0
-1

)

t/τ0

<J/J0>=0.5
<J/J0>=1.0
<J/J0>=1.5

FIG. 5. Temporal evolution of the squared gradient |∇h|2 for

the cases with constant beam flux characterized by〈J/J0〉 = 0.5, 1.0,

1.5 and 〈J̃2〉 = 0. The different saturation levels are well separated

at |∇h|2 = 2.5, 4.9 and 7.2 ν3
0 K−1

0 λ−2
0 for 〈J/J0〉 = 0.5, 1.0, 1.5,

respectively.

plays an important role for the statistics of the 199 individual

results. Obviously a very strong reduction of the scatter can

be achieved by a suitable choice of τ�. A similar result is

obtained for the input parameters ν and K . The coefficients

not included in the model simulations lead to regression

coefficients of the discovery model Eq. (B1) being smaller
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FIG. 6. Shown are the 199 different results for the reconstruction

of the coefficient λ obtained by evaluation of subsequent pairs of 200

snapshots of the simulations all of them with 〈J/J0〉 = 1 but with

different increments τ�/�t = 1, 10, 100 between the two respective

snapshots used for the reconstruction method. The calculated values

are represented by their relative deviation from the known input

parameter λ0 in percent.

than ν, λ, and K by several orders of magnitude. Therefore,

the extra terms included in the discovery model are found to be

negligible—as they should be in this numerical test. However,

note in this context that the damping term plays a special role,

as is discussed in Appendix B. The distribution of the relevant

coefficients found in the regression procedure have clear

Gaussian signatures, as illustrated by the plots in Fig. 7. There

the distribution functions of the coefficients ν, λ, and K for

differently selected increments are displayed. In addition,

Gaussian fits G(s) are drawn, which were determined from

the mean values µν , µλ, and µK and the variances σ 2
ν , σ 2

λ ,

and σ 2
K of each series of results using Gaussian functions for

s = ν, λ, K :

G(s) =
1√

2πσ 2
s

exp

[
−

(s − µs)2

2σ 2
s

]
, (24)

and for the computation of averages the relations

µs =
1

R

R∑

k=1

sk, σ 2
s =

1

R

R∑

k=1

(sk − µs)2, (25)

with R denoting the number of reconstructions. It can be

stated that the reconstructed coefficients are clearly Gaussian

distributed, and the variance and the mean value are influ-

enced by the choice of the increment τ�. An explanation

for this obvious Gaussian signature in Fig. 7 is pending. To

shed more light on this connection between reconstruction

accuracy and time increment τ�, Fig. 8 shows the deviations

of the numerical mean values µν , µλ, and µK for the three

example cases as a function of the ratio τ�/τ∗. The timescale

τ∗ is the inverse of the growth rate γ∗ It takes into account

the changes of the characteristic timescale of the system with

varying beam flux:

τ∗ =
4K0

ν2
0

〈
J

J0

〉−2

= 4τ0

〈
J

J0

〉−2

. (26)

In the plots of Fig. 8 it can be seen that the deviations of ν and

λ from the correct value are less than 0.1% for appropriately

chosen increments τ�. The qualitative picture is similar for

µK , but there the error for the case with 〈J/J0〉 = 0.5 is 1%

at best. A certain optimal choice of the increment seems

to be possible, at which the coefficients can be determined

particularly well, but the particular value for the ratio τ�/τ∗
seems to be different for the different choices of 〈J/J0〉. In

Fig. 9 the standard deviations σν , σλ, and σK are displayed,

which are scaled by the respective true values of the model

coefficients. Again a plot versus the scaled increment τ�/τ∗
is chosen and, surprisingly, the functional form of σν , σλ,

and σK are all close to each other. The scatter in the re-

constructed coefficients has a pronounced minimum close

to 5 × 10−3τ�/τ∗. For both cases, reduction and increase of

τ�, the noise in the determination of the model coefficients

increases. Careful inspection shows that the standard devi-

ations can be approximated reasonably well by a functional

form

σs

s
= c1

τ∗

τ�

+ c2

(
τ�

τ∗

)3/4(
τ�

�t

)1/4

, (27)
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FIG. 7. Shown are the distribution functions (a) PDF(ν/ν0),

(b) PDF(λ/λ0), and (c) PDF(K/K0) for the reconstruction using

different increments τ�/�t = 1, 10, 100 and based on 200 snapshots

of the simulation with 〈J/J0〉 = 1. Gaussian fits G(ν/ν0 ), G(λ/λ0),

and G(K/K0) are also shown in the figure based on moments of

ν, λ, and K computed for the series of reconstruction results. The

narrowest distribution occurs in all cases (a), (b) and (c) for the

parameter τ�/�t = 10, the widest for τ�/�t = 1.
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FIG. 8. Plots of the relative error of the averaged values (a) µν ,

(b) µλ, and (c) µK obtained by averaging the reconstructed coeffi-

cients over all 199 reconstructions. For all cases 〈J/J0〉 = 0.5, 1.0,

1.5 the relative error can be less than 1% as long as the incremental

time τ� is smaller than 5 × 10−3τ∗.
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FIG. 9. Plots of the relative standard deviation (a) σν , (b) σλ, and

(c) σK obtained by averaging the reconstructed coefficients over all

199 reconstructions. For all cases 〈J/J0〉 = 0.5, 1.0, 1.5 the curves

are almost identical and a pronounced minimum occurs at around

τ� ∼ 5 × 10−3τ∗.

where c1 and c2 are constant. However, the formula (27) has

only been verified for the present cases and cannot yet be

derived from basic principles. Nevertheless, the qualitative

trends become plausible if one considers that a small value

for the ratio τ�/τ∗ is synonymous with only a slight change of

h between consecutive snapshots. The corresponding discrete

approximation of the time derivative ∂h/∂t tends to zero with

decreasing τ�/τ∗. Then the reconstruction model given by

Eqs. (12) and (13) and leading to the solution (19) is not well

defined anymore. On the other hand, an increase of τ�/τ∗ can

be considered as an averaging procedure, where responses of

the model system are not resolved, but rather a time-averaged

reaction is considered. Both types of inaccuracies are caused

by some kind of information loss. This impairs the usefulness

of the method for both limits τ�/τ∗ → 0 and τ�/τ∗ → ∞.

Thus, an optimal situation is found somewhere in an interme-

diate range of τ�/τ∗ and, according to the simple approxima-

tion of Eq. (27), this is found close to τ� =
√

c1/c2τ
7/8
∗ �t1/8.

Therefore, in order to evaluate unknown data as accurately as

possible, e.g., from an experiment, information about typical

timescales of the system to be studied is required, i.e., infor-

mation about the linear instabilities which also determine the

timescale τ∗ in these studies.

Before the influence of ion-beam fluctuations is studied in

the next section, the results of this section shall be briefly

summarized.

(1) When initialized with small amplitude noise in the

height, the simulations evolve along well-known linear insta-

bilities with exponential growth. Then, even without beam

fluctuations, the model system shows fluctuating surface

structures and nonlinear saturation (Figs. 1 and 5).

(2) The surface patterns strongly depend on a reduction or

an increase of the ion flow (Figs. 3 and 4). The changes can be

explained by rescaling the characteristic temporal and spatial

scales, γ∗ and l∗, respectively.

(3) Although the structures in the three cases are different,

the distribution functions of the local fluctuations of the sur-

face height h are almost identical and show a clear Gaussian

characteristic (Fig. 2).

(4) The scattering of the reconstructed model coefficients

determined from a large number of snapshots has a clear

Gaussian characteristic. This Gaussian noise in the recon-

struction introduces inherent uncertainties in the model dis-

covery (Figs. 6 and 7).

(5) The reconstruction of the model coefficients can be

optimized to an accuracy of 0.1% or less if the temporal

increment is chosen appropriately. Then the mean value of

the coefficients from a large number of evaluated snapshots

deviates from the true value by a maximum of 0.1% and the

standard deviation is of the same order (Figs. 8 and 9).

(6) The choice of the temporal increment τ� represents a

critical part of the method, for which no general explanation

and optimization method can be given at the moment. Despite

these uncertainties, the analysis offers a good approach to

optimizing the method—at least for the moment and for the

cases considered. This calibration might be guided by the

formula given in Eq. (27) which gives an empirical estimate

of the standard deviation of reconstructed parameters as a
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function of the characteristic timescale τ∗ and the sampling

time τ�.

B. Cases with beam fluctuations

In the following sections, fluctuations of the ion beam are

taken into account, whereby for the temporal variation of the

ion-beam amplitude a lognormal distribution is considered.

The lognormal distribution was chosen because of its rele-

vance in turbulent fluctuations of plasma beams [22]. The

beam fluctuations are prescribed by a mean value 〈J/J0〉 = 1

and a variance 〈J̃2/J2
0 〉 = 0.09. A scan is performed for the

correlation time τ of the lognormally distributed beam noise

along the series τ/τ0 = 10−4, 10−3, 10−2, 10−1, 100, 101.

1. Analysis of surface morphology

As in the previous section the layer thickness W and the

mean-squared gradient |∇h|2 are used to follow the evolu-

tion of the surface morphology. The results for the series

of correlation times τ/τ0 are displayed in Fig. 10. Again,

statistically stationary states with 〈W 〉 ≈ 4 are found after an

exponential growth dominated by the most unstable surface

mode. The plot of |∇h|2 shows an increasing scatter when

the scaled correlation time τ/τ0 is increased. Also it can be

seen that for the larger values of τ/τ0 considered the mean-

squared gradient is found to be roughly in the range between

3 and 7 ν3
0 K−1

0 λ−2
0 , which are close to the saturation levels

〈|∇h|2〉 ≈ 2.5ν3
0 K−1

0 λ−2
0 and 〈|∇h|2〉 ≈ 7.2ν3

0 K−1
0 λ−2

0 of the

constant-beam results of Fig. 5. Of course, this agreement

is not accidental, but is due to the fact that the parameters

of the constant beam simulations have been chosen so that

the model parameters limit approximately the range covered

by the fluctuations. Consequently, it can be concluded that

the size of the structures oscillates between the two bound-

ary cases with 〈J/J0〉 = 0.5 and 〈J/J0〉 = 1.5 considered in

Sec. V A.

2. Analysis of reconstructed model coefficients ν, λ, K

Due to the oscillations in the surface properties and the

results from the above investigations for constant ion beams,

it can be expected that the reconstructed model coefficients

also have a distribution reflecting the fluctuations of the ion

beam. To analyze details, the PDFs of ν/ν0 and λ/λ0 are

displayed in Fig. 11. It is found that the numerical PDFs can

be approximated very well with lognormal fits H (s):

H (s) =
1

s

√
2π ln

(
σ 2

s

/
µ2

s

) exp

[
−

(
ln s − ln µ2

s

/
σs

)2

2 ln
(
σ 2

s

/
µ2

s

)
]
,

(28)

where s = ν, λ and µs and σ 2
s are defined by Eq. (25). The

values of ν/ν0 and λ/λ0 show a pronounced scatter which is

about 10% for the smaller values of τ/τ0 but is increased up

to 50% for τ/τ0 > 10−1. The comparison with the beam flux

distribution also shown in Fig. 11 proves that the increase of

the correlation time τ/τ0 pushes the distribution of the scaled

model parameters closer to the distribution of the scaled beam

flux. Again, a qualitative explanation can be found for this
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FIG. 10. Temporal evolution of (a) the layer thickness W and

(b) the squared gradient |∇h|2 for the cases with a fluctuating beam

flux characterized by 〈J/J0〉 = 1.0, 〈J̃2/J2
0 〉 = 0.09, and τ/τ0 =

10−4, 10−3, 10−2, 10−1, 100, 101. For all values of τ/τ0 in the sta-

tistically stationary phase the temporal average of the layer thickness

is 〈W 〉 ≈ 4 ν0/λ0. The respective mean values of the squared gradient

〈|∇h|2〉 lie in a range between 4.3 and 4.9 ν3
0 K−1

0 λ−2
0 . The scattering

of |∇h|2 decreases when the scaled correlation time τ/τ0 is reduced.

trend: The reference time τ0 characterizes the model system

as far as it describes the linear growth rate on the one hand

and stands for a response time on the other hand. For small

values τ/τ0 ≪ 1 the system cannot follow the fluctuations

of the beam on the timescale τ . The model coefficients stay

effectively close to the average value and the beam fluctua-

tions are canceled out to a certain extent. Some noise level

is left and the standard deviation is clearly affected by this.

On the contrary, a large value of τ/τ0 represents slow beam

fluctuations with respect to the response time of the system.

Then the dynamics can easily follow through the entire range

of parameter variations. In this case the lognormal beam
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FIG. 11. Reconstruction results for the cases with fluctuat-

ing beam flux characterized by 〈J/J0〉 = 1.0, 〈J̃2/J2
0 〉 = 0.09, and

τ/τ0 = 10−4, 10−3, 10−2, 10−1, 100, 101. Shown are the distribu-

tion functions (a) PDF(ν/ν0) and (b) PDF(λ/λ0) for an increment

τ�/�t = 100 and different correlation lengths τ/�t = 10−1, 100,

101, 102, 103, 104. The dotted lines represent the raw numerical

data and the solid line the lognormal fits H (ν/ν0) and H (λ/λ0). The

evaluation is done for 2000 snapshots. The lognormal distribution of

the beam flux is also indicated by the thick red curve.

distribution is recovered by the distribution of reconstruction

results. To quantify this effect even more, Figs. 12 and 13

show the numerical results for the moments of the PDFs of

Fig. 11. The deviation of the averaged mean values and stan-

dard deviations of ν and λ are given with respect to the mean

values ν0 and λ0. Now the mean values ν0 and λ0 represent the
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FIG. 12. Plots of the relative error of the averaged values (a) µν

and (b) µλ obtained by averaging the reconstructed coefficients over

1999 reconstructions. Fluctuating beams have been considered with

〈J/J0〉 = 1.0, 〈J̃2/J2
0 〉 = 0.09, and τ/τ0 = 10−4, 10−3, 10−2, 10−1,

100, 101.

model parameters corresponding to the mean value 〈J/J0〉 = 1

of the beam lognormal distribution. As can be seen in Fig. 12

the reconstructed values of ν/ν0 and λ/λ0 are close to 1 with

a few percent deviation if τ/τ0 ≪ 1. For larger values of τ/τ0

the results are far from this mean and also show a strong

dependence on the choice of increment τ�, indicated by ad-

ditional results obtained with τ�/�t = 300. Actually, this is

in accordance with the arguments given above: For τ/τ0 ≪ 1

the beam fluctuations are canceled out to a certain extent

and one is left with a noisy but fairly accurate reconstruction

of the mean values ν0 and λ0. For values τ/τ0 > 10−2 the

results become completely random and unpredictable. Then

the average values of ν and λ are far from the mean value

ν0 and λ0. Also the choice of the sampling time τ� changes

the results drastically. This is explained by the bad resolution
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FIG. 13. Plots of the relative standard deviation (a) σν and

(b) σλ obtained by averaging the reconstructed coefficients over

1999 reconstructions. Fluctuating beams have been considered with

〈J/J0〉 = 1.0, 〈J̃2/J2
0 〉 = 0.09 and τ/τ0 = 10−4, 10−3, 10−2, 10−1,

100, 101. The reference value denoted by “ref” in the plots marks

the standard deviation of the imposed beam fluctuations 〈J̃2/J2
0 〉1/2 =

0.3, which represents the limit of long correlation times τ/τ0 ≫ 1,

i.e., for cases when the surface dynamics is fast enough to adapt the

slow beam fluctuation dynamics.

of the beam correlation time, due to the fact that the total

period covered by the snapshots of the reconstructions does

not give sufficient statistics of the slow beam fluctuations.

These conclusions are supported by the standard deviations

displayed in Fig. 13. For small τ/τ0 the standard deviation

is in a range of a few percent, but it increases for increasing

τ/τ0 to the value σν/ν0 = σλ/λ0 = 0.3. This value is imposed

by the beam statistics with 〈J̃2/J2
0 〉1/2 = 0.3. If one considers

the results of Figs. 12 and 13 together, it is to be expected

that an improvement of statistics by increasing the number

of snapshots would permit a more accurate calculation of

the mean values ν0 and λ0. In spite of all this, in a typical

experimental arrangement, the requirement τ/τ0 ≪ 10−2 is

usually met, and as a result a reconstruction can be expected

with an accuracy of a few percent.

VI. SUMMARY

As preparatory work for future analysis of experimen-

tal data a model discovery technique for the identification

of Kuramoto-Sivashinsky model parameters in ion-beam-

induced surface morphological dynamics has been discussed.

The reconstruction method has been applied to a paradigmatic

model described by a scaled evolution equation for the surface

height including ion-beam fluctuations. The reconstruction

works very well for examples with constant beam flux. Pre-

scribed model coefficients could be extracted with an error

less than 1%. The coefficients found have statistical variations

that have been studied in detail. It is shown that an inherent

Gaussian noise occurs in the reconstruction of the model

parameters, which varies strongly with the physical timescales

of the model system and the numerical parameters of the

method, especially the sampling rate. Parameter scans show

the possibility and the need for an optimal choice of sampling

intervals and time steps for the data evaluation. In addition to

these calculations with a constant ion beam, further studies

were carried out to examine the influence of ion beam fluc-

tuations on the surface morphology. There the reconstruction

method has been applied to the case of nonconstant model

coefficients. To cope with typical features of plasma beam

statistics a lognormal multiplicative noise was included in

the surface model. In this case of fluctuating coefficients, it

could be seen that the quality of the reconstruction depends

essentially on the interplay of the correlation time of the beam

fluctuations and the sampling time. The distribution of the

coefficients in the reconstructions follows the statistics of the

beam and an improvement in the quality of the results is

achieved by a sampling time that is greater than or at least

equal to the correlation time of the beam.

In summary, the presented method provides a very accurate

tool for identifying model parameters for continuum models

of surface dynamics. This can prove to be a useful method

for deriving empirical models if there is a sufficient amount

of experimental data available. Another application would

be to derive effective macroscopic models for numerical

simulations of microscopic processes, such as a continuum

approximation for atomistic Monte Carlo simulations. How-

ever, the inevitable statistical variations of the reconstruction

results require a careful analysis of the numerical parameters

to account for the characteristic times of the system under

consideration (growth rates of instabilities, correlation times

of fluctuations, etc.). For a further assessment of the method, it

is particularly necessary to examine Eq. (27) in more detail by

statistically analyzing a large number of further simulations.

This equation gives an empirical estimate of the quality (the

variance) of reconstructed parameters as a function of the

characteristic timescale τ∗ of the physical system and the

sampling time τ�.
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APPENDIX A: LOGNORMAL DISTRIBUTED VARIABLE

WITH TEMPORAL CORRELATION

The random quantity φ is assumed to obey the stochastic

Langevin equation

τ
∂φ

∂t
= −φ + ǫζ . (A1)

Here ζ is Gaussian white noise with 〈ζ 〉 and correlation

〈ζ (t1)ζ (t2)〉 = δ(t1 − t2). (A2)

The constant ǫ is the amplitude of the noise and τ is the

correlation time. This defines an Ornstein-Uhlenbeck process

whose solution is

φ(t + �t ) = φ(t )e−�t/τ + ω, (A3)

where

ω =
ǫ

τ

∫ t+�t

t

exp

(
−

t + �t − t ′

τ

)
ζdt ′. (A4)

It follows that ω is a Gaussian distributed random number with

mean 〈ω〉 = 0 and variance

〈ω2〉 = σ 2(1 − e−2�t/τ ), (A5)

where

σ 2 =
ǫ2

2τ
. (A6)

Thus, in the statistically stationary phase, the random variable

φ is characterized by

〈φ(t + �t )〉 = 〈φ(t )〉 = 0, (A7)

〈φ2(t + �t )〉 = 〈φ2(t )〉 = σ 2. (A8)

Details on this can be found in Refs. [35,36]. For the covari-

ance Cφ one finds

Cφ (�t ) = 〈φ(t + �t )φ(t )〉 = σ 2e−�t/τ , (A9)

and its correlation coefficient Rφ reads

Rφ (�t ) =
〈φ(t + �t )φ(t )〉

[〈φ(t + �t )2〉〈φ(t )2〉]1/2
= e−�t/τ . (A10)

This in turn gives the correlation time τ according to
∫ ∞

0

Rφ

(
t ′)dt ′ = τ. (A11)

Using these results, it follows for the random quantity ψ =
eµ+φ that

ψ (t + �t ) = eω+µ−µe−�t/τ

ψ (t )e−�t/τ

. (A12)

One obtains for the first two moments

〈ψ (t + �t )〉 = 〈ψ (t )〉 = eµ+σ 2/2, (A13)

〈ψ2(t + �t )〉 = 〈ψ2(t )〉 = e2µ+2σ 2

. (A14)

Thus, the covariance and correlation coefficient result as

Cψ (�t ) = exp[2µ + σ 2(1 + e−�t/τ )], (A15)

Rψ (�t ) = exp[σ 2(e−�t/τ − 1)]. (A16)

Note that the correlation coefficient of ψ does not vanish for

�t → ∞ and a lower limit exists: Rψ � e−σ 2

.

APPENDIX B: DISCOVERY MODEL

The particular ansatz for the discretized Eq. (12) used

to conduct the reconstruction and discovery analysis of

Secs. V A 2 and V B 2 is chosen as follows:

∂h

∂t
= α1 + α2h + α3h2 + α4∂xh + α5∂yh

+α6(∂xh)2 + α7(∂yh)2 + α8(∂xh)(∂yh)

+α9∂xxh + α10∂yyh + α11∂xyh

+α12∂xxxxh + α13∂yyyyh + α14∂xxyyh

+α15(∂xxh + ∂yyh)[(∂xh)2 + (∂yh)2]

+α16(∂xh)3 + α17(∂yh)3 + α18∂xxxh

+α19∂xxyh + α20∂xyyh + α21∂yyyh

+α22(∂xh)(∂xxh) + α23(∂xh)(∂yyh)

+α24(∂yh)(∂xxh) + α25(∂yh)(∂yyh)

+α26∂xx(∂xh)2 + α27∂xx(∂yh)2

+α28∂yy(∂xh)2 + α29∂yy(∂yh)2 + α30h. (B1)

Even though in the present study many of the terms of this

candidate model for data analysis are just used to demonstrate

the ability of the model discovery method to identify correctly

also zero coefficients for noncontributing processes, many of

the terms listed in Eq. (B1) have a particular meaning and

have been discussed in detail in the literature. The coeffi-

cient α1 represents a constant erosion and terms proportional

to α2 and α30 represent damping effects. In particular the

damping term α2h has been proven to be very important in

the formation of hexagonal patterns [20]. The terms with α4

and α5 represent constant velocities of the surface structures.

These are usually considered as a consequence of grazing

incidence of the ion beam [4–6]. The coefficients α6 and α7

describe the basic process of slope-dependent erosion. The

terms with α9, α10, and α11 describe the effect of surface

tension in the erosion and α12, α13, and α14 represent surface

diffusion. An extension of the KS model with a term like the

one proportional to α15 has been discussed in the context of

step morphology and Cahn-Hilliard models [18,19]. Also, an

extension by the terms with coefficients α26, α27, α28, and α29

has been found important to take into account the coupling

between erosion and surface transport to lowest order [12].

It is often called the conserved Kardar-Parisi-Zhang term

(CKPZ term) and its isotropic form (α26 = α27 = α28 = α29)
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TABLE I. Reconstruction results for the model parameters α1, . . . , α30 obtained for a simulation run with 〈J/J0〉 = 1 as described in

Sec. V A 2. For the averaging, 400 snapshots have been used.

α1 α2 α3 α4 α5 α6

−2.5 7.9 × 10−4 −1.3 × 10−5 5.2 × 10−4 2.5 × 10−4 0.4999

α7 α8 α9 α10 α11 α12

0.4999 2.2 × 10−5 −0.993 −0.993 −5.8 × 10−5 −0.992

α13 α14 α15 α16 α17 α18

−0.992 −1.990 2.9 × 10−4 −9.0 × 10−6 −4.5 × 10−5 8.9 × 10−5

α19 α20 α21 α22 α23 α24

2.8 × 10−4 1.4 × 10−5 −2.5 × 10−5 3.3 × 10−5 −2.1 × 10−6 1.7 × 10−5

α25 α26 α27 α28 α29 α30

2.9 × 10−5 1.1 × 10−3 7.4 × 10−4 6.6 × 10−4 1.1 × 10−3 −1.34

has been discussed, e.g., in Refs. [10,37–39]. A derivation

and discussion of an anisotropic form is reported in Ref. [40].

Further information on the significance of these model terms

and theoretical derivations from microscopic theories can be

found in Refs. [1–21] and the references listed there. The

other terms of Eq. (B1) not mentioned in this section do

not have an obvious meaning and have been included just to

keep the model discovery flexible for future applications using

experimental data. Now the comparison of Eq. (B1) with the

particular simulation model (5) and the parameters used in

Sec. V A results in the following assignment:

α6 = α7 =
1

2

〈
J

J0

〉
, α9 = α10 = −

〈
J

J0

〉
, (B2)

α12 = α13 = −1, α14 = −2, (B3)

α30 = −100. (B4)

The other coefficients should be zero for the cases considered

in Sec. V. This is indeed obtained to a high level of accu-

racy as illustrated by the numbers in the Table I containing

the averaged coefficients αi for a reconstruction done for

400 snapshots based on the simulations of Sec. V A 2 with

〈J/J0〉 = 1. The coefficients α6, α7, α9, α10, α12, α13, and α14

are found with an error less than than 1%. One important

point should be emphasized: At first glance, the damping

coefficient α30 seems to be completely wrong. However, a

closer look reveals that the coefficient α1 supports the damp-

ing effect. If one takes into account that the average height

h in the simulations was not absolutely zero, but was found

as h ≈ 0.025 07 an effective coefficient given by the sum

α1/h + α30 ≈ −99.87 provides almost the right value for the

damping. This kind of mismatch in the constant damping term

α1 and the damping of the average height h via α30 is found

as a systematic bias in the algorithm. It is recommended that

these two shares are always considered together, because these

two terms cannot be separated cleanly in the reconstruction.

On the other hand, all other terms, despite of their com-

plexity and nonlinearity can be reproduced with quite high

accuracy.
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