000865504 001__ 865504
000865504 005__ 20220930130219.0
000865504 0247_ $$2doi$$a10.2136/vzj2019.05.0053
000865504 0247_ $$2Handle$$a2128/23194
000865504 0247_ $$2altmetric$$aaltmetric:68369106
000865504 0247_ $$2WOS$$aWOS:000488985900001
000865504 037__ $$aFZJ-2019-04907
000865504 082__ $$a550
000865504 1001_ $$0P:(DE-Juel1)165635$$aLi, Dazhi$$b0
000865504 245__ $$aCan Drip Irrigation be Scheduled with Cosmic-Ray Neutron Sensing?
000865504 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2019
000865504 3367_ $$2DRIVER$$aarticle
000865504 3367_ $$2DataCite$$aOutput Types/Journal article
000865504 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582040006_1128
000865504 3367_ $$2BibTeX$$aARTICLE
000865504 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865504 3367_ $$00$$2EndNote$$aJournal Article
000865504 520__ $$aIrrigation is essential for maintaining food production in water-scarce regions. The irrigation need depends on the water content of the soil, which we measured with the novel technique of cosmic-ray neutron sensing (CRNS). The potential of the CRNS technique for drip irrigation scheduling was explored in this study for the Picassent site near Valencia, Spain. To support the experimental evidence, the neutron transport simulation URANOS was used to simulate the effect of drip irrigation on the neutron counts. The overall soil water content (SWC) in the CRNS footprint was characterized with a root mean square error <0.03 cm3/cm3, but the experimental dataset indicated methodological limitations to detect drip water input. Both experimental data and simulation results suggest that the large-area neutron response to drip irrigation is insignificant in our specific case using a standard CRNS probe. Because of the small area of irrigated patches and short irrigation time, the limited SWC changes due to drip irrigation were not visible from the measured neutron intensity changes. Our study shows that CRNS modeling can be used to assess the suitability of the CRNS technique for certain applications. While the standard CRNS probe was not able to detect small-scale drip irrigation patterns, the method might be applicable for larger irrigated areas, in drier regions, and for longer and more intense irrigation periods. Since statistical noise is the main limitation of the CRNS measurement, the capability of the instrument could be improved in future studies by larger and more efficient neutron detectors.
000865504 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000865504 588__ $$aDataset connected to CrossRef
000865504 7001_ $$0P:(DE-HGF)0$$aSchrön, Martin$$b1
000865504 7001_ $$0P:(DE-HGF)0$$aKöhli, Markus$$b2
000865504 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b3
000865504 7001_ $$0P:(DE-HGF)0$$aWeimar, Jannis$$b4
000865504 7001_ $$0P:(DE-HGF)0$$aJiménez Bello, Miguel Angel$$b5
000865504 7001_ $$0P:(DE-Juel1)144738$$aHan, Xujun$$b6
000865504 7001_ $$0P:(DE-HGF)0$$aMartínez Gimeno, Maria Amparo$$b7
000865504 7001_ $$0P:(DE-HGF)0$$aZacharias, Steffen$$b8
000865504 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b9
000865504 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b10$$eCorresponding author
000865504 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2019.05.0053$$gVol. 18, no. 1, p. 0 -$$n1$$p $$tVadose zone journal$$v18$$x1539-1663$$y2019
000865504 8564_ $$uhttps://juser.fz-juelich.de/record/865504/files/Invoice%20%23737773.pdf
000865504 8564_ $$uhttps://juser.fz-juelich.de/record/865504/files/Invoice%20%23737773.pdf?subformat=pdfa$$xpdfa
000865504 8564_ $$uhttps://juser.fz-juelich.de/record/865504/files/vzj-18-1-190053.pdf$$yOpenAccess
000865504 8564_ $$uhttps://juser.fz-juelich.de/record/865504/files/vzj-18-1-190053.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865504 8767_ $$8737773$$92019-09-24$$d2019-10-02$$eAPC$$jZahlung erfolgt$$z2950 $
000865504 909CO $$ooai:juser.fz-juelich.de:865504$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000865504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165635$$aForschungszentrum Jülich$$b0$$kFZJ
000865504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b3$$kFZJ
000865504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b9$$kFZJ
000865504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b10$$kFZJ
000865504 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000865504 9141_ $$y2019
000865504 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865504 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000865504 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2017
000865504 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865504 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865504 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865504 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865504 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000865504 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865504 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865504 920__ $$lyes
000865504 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000865504 980__ $$ajournal
000865504 980__ $$aVDB
000865504 980__ $$aI:(DE-Juel1)IBG-3-20101118
000865504 980__ $$aAPC
000865504 980__ $$aUNRESTRICTED
000865504 9801_ $$aAPC
000865504 9801_ $$aFullTexts