001     865504
005     20220930130219.0
024 7 _ |a 10.2136/vzj2019.05.0053
|2 doi
024 7 _ |a 2128/23194
|2 Handle
024 7 _ |a altmetric:68369106
|2 altmetric
024 7 _ |a WOS:000488985900001
|2 WOS
037 _ _ |a FZJ-2019-04907
082 _ _ |a 550
100 1 _ |a Li, Dazhi
|0 P:(DE-Juel1)165635
|b 0
245 _ _ |a Can Drip Irrigation be Scheduled with Cosmic-Ray Neutron Sensing?
260 _ _ |a Alexandria, Va.
|c 2019
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582040006_1128
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Irrigation is essential for maintaining food production in water-scarce regions. The irrigation need depends on the water content of the soil, which we measured with the novel technique of cosmic-ray neutron sensing (CRNS). The potential of the CRNS technique for drip irrigation scheduling was explored in this study for the Picassent site near Valencia, Spain. To support the experimental evidence, the neutron transport simulation URANOS was used to simulate the effect of drip irrigation on the neutron counts. The overall soil water content (SWC) in the CRNS footprint was characterized with a root mean square error <0.03 cm3/cm3, but the experimental dataset indicated methodological limitations to detect drip water input. Both experimental data and simulation results suggest that the large-area neutron response to drip irrigation is insignificant in our specific case using a standard CRNS probe. Because of the small area of irrigated patches and short irrigation time, the limited SWC changes due to drip irrigation were not visible from the measured neutron intensity changes. Our study shows that CRNS modeling can be used to assess the suitability of the CRNS technique for certain applications. While the standard CRNS probe was not able to detect small-scale drip irrigation patterns, the method might be applicable for larger irrigated areas, in drier regions, and for longer and more intense irrigation periods. Since statistical noise is the main limitation of the CRNS measurement, the capability of the instrument could be improved in future studies by larger and more efficient neutron detectors.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schrön, Martin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Köhli, Markus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 3
700 1 _ |a Weimar, Jannis
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jiménez Bello, Miguel Angel
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Han, Xujun
|0 P:(DE-Juel1)144738
|b 6
700 1 _ |a Martínez Gimeno, Maria Amparo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zacharias, Steffen
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 9
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 10
|e Corresponding author
773 _ _ |a 10.2136/vzj2019.05.0053
|g Vol. 18, no. 1, p. 0 -
|0 PERI:(DE-600)2088189-7
|n 1
|p
|t Vadose zone journal
|v 18
|y 2019
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/865504/files/Invoice%20%23737773.pdf
856 4 _ |u https://juser.fz-juelich.de/record/865504/files/Invoice%20%23737773.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/865504/files/vzj-18-1-190053.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865504/files/vzj-18-1-190053.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:865504
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21