000865531 001__ 865531
000865531 005__ 20240313095022.0
000865531 037__ $$aFZJ-2019-04915
000865531 1001_ $$0P:(DE-Juel1)166067$$aPauli, Robin$$b0$$ufzj
000865531 1112_ $$aBernstein Conference 2019$$cBerlin$$d2019-09-17 - 2019-09-20$$wGermany
000865531 245__ $$aLocalization of coherent activity based on multi-electrode local field potentials
000865531 260__ $$c2019
000865531 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1570532845_4405
000865531 3367_ $$033$$2EndNote$$aConference Paper
000865531 3367_ $$2BibTeX$$aINPROCEEDINGS
000865531 3367_ $$2DRIVER$$aconferenceObject
000865531 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000865531 3367_ $$2ORCID$$aOTHER
000865531 520__ $$aDeep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established method for the suppression of motor deficits in Parkinson's disease. The efficacy and the extent of side effects of DBS depend critically on the positioning of the stimulation electrode. In particular with the increased use of directional DBS, it is becoming more difficult to find optimal stimulation parameters. A major challenge during the positioning of DBS electrodes is the detection of hotspots associated with the generation of pathological coherent activity. Here, we develop and test a method aiming at localizing confined regions of coherent activity based on the local field potential (LFP) recorded with multiple electrodes (see figure). Our approach involves two steps, the identification of coherent sources by independent-component analysis of the multi-channel recordings in Fourier space, and the localization of identified sources by means of current-source-density analysis. We benchmark this technique for a range of source sizes and source-electrode distances based on synthetic ground-truth data generated by multicompartment models of STN neurons with realistic morphology. In this framework, we show that the spatio-temporal structure of the LFP recorded with multiple electrodes can be exploited to achieve a localization precision exceeding the spatial resolution of the electrode configuration. The proposed method permits a continuous tracking of source positions and may therefore provide a tool to study the spatio-temporal organization of pathological activity in STN. Moreover, it could serve as an intra-operative guide for the positioning of DBS electrodes and thereby improve and speed up the implantation process and the adjustment of stimulus parameters.
000865531 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000865531 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x1
000865531 536__ $$0G:(GEPRIS)233510988$$aDFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)$$c233510988$$x2
000865531 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000865531 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
000865531 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x5
000865531 536__ $$0G:(DE-HGF)B1175.01.12$$aW2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)$$cB1175.01.12$$x6
000865531 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x7
000865531 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b1$$ufzj
000865531 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b2$$eCorresponding author$$ufzj
000865531 909CO $$ooai:juser.fz-juelich.de:865531$$pec_fundedresources$$pVDB$$popenaire
000865531 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166067$$aForschungszentrum Jülich$$b0$$kFZJ
000865531 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b1$$kFZJ
000865531 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b2$$kFZJ
000865531 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000865531 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x1
000865531 9141_ $$y2019
000865531 920__ $$lno
000865531 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000865531 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000865531 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000865531 980__ $$aabstract
000865531 980__ $$aVDB
000865531 980__ $$aI:(DE-Juel1)INM-6-20090406
000865531 980__ $$aI:(DE-Juel1)IAS-6-20130828
000865531 980__ $$aI:(DE-Juel1)INM-10-20170113
000865531 980__ $$aUNRESTRICTED
000865531 981__ $$aI:(DE-Juel1)IAS-6-20130828